Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Biomedicines ; 12(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38397874

RESUMO

A group of 27 patients diagnosed with metastatic triple-negative breast cancer (mTNBC) was randomly distributed into two groups and underwent different lines of metronomic treatment (mCHT). The former group (N 14) received first-line mCHT and showed a higher overall survival rate than the second group (N 13), which underwent second-line mCHT. Analysis of one patient still alive from the first group, diagnosed with mTNBC in 2019, showed a complete metabolic response (CMR) after a composite approach implicating first-line mCHT followed by second-line epirubicin and third-line nab-paclitaxel, and was chosen for subsequent molecular characterization. We found altered expression in the cancer stemness-associated gene NOTCH-1 and its corresponding protein. Additionally, we found changes in the expression of oncogenes, such as MYC and AKT, along with their respective proteins. Overall, our data suggest that a first-line treatment with mCHT followed by MTD might be effective by negatively regulating stemness traits usually associated with the emergence of drug resistance.

2.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003483

RESUMO

Cyclin-dependent kinase (CDK) 4/6 inhibitors have significantly improved progression-free survival in hormone-receptor-positive (HR+), human-epidermal-growth-factor-receptor-type-2-negative (HER2-) metastatic luminal breast cancer (mLBC). Several studies have shown that in patients with endocrine-sensitive or endocrine-resistant LBC, the addition of CDK4/6 inhibitors to endocrine therapy significantly prolongs progression-free survival. However, the percentage of patients who are unresponsive or refractory to these therapies is as high as 40%, and no reliable and reproducible biomarkers have been validated to select a priori responders or refractory patients. The selection of mutant clones in the target oncoprotein is the main cause of resistance. Other mechanisms such as oncogene amplification/overexpression or mutations in other pathways have been described in several models. In this study, we focused on palbociclib, a selective CDK4/6 inhibitor. We generated a human MCF-7 luminal breast cancer cell line that was able to survive and proliferate at different concentrations of palbociclib and also showed cross-resistance to abemaciclib. The resistant cell line was characterized via RNA sequencing and was found to strongly activate the epithelial-to-mesenchymal transition. Among the top deregulated genes, we found a dramatic downregulation of the CDK4 inhibitor CDKN2B and an upregulation of the TWIST1 transcription factor. TWIST1 was further validated as a target for the reversal of palbociclib resistance. This study provides new relevant information about the mechanisms of resistance to CDK4/6 inhibitors and suggests potential new markers for patients' follow-up care during treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação para Cima , Quinase 4 Dependente de Ciclina , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Intervalo Livre de Progressão , Quinase 6 Dependente de Ciclina , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
3.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982938

RESUMO

Triple-negative breast cancer (TNBC) is a very aggressive disease even in its early stages and is characterized by a severe prognosis. Neoadjuvant chemotherapy is one of the milestones of treatment, and paclitaxel (PTX) is among the most active drugs used in this setting. However, despite its efficacy, peripheral neuropathy occurs in approximately 20-25% of cases and represents the dose-limiting toxicity of this drug. New deliverable strategies to ameliorate drug delivery and reduce side effects are keenly awaited to improve patients' outcomes. Mesenchymal stromal cells (MSCs) have recently been demonstrated as promising drug delivery vectors for cancer treatment. The aim of the present preclinical study is to explore the possibility of a cell therapy approach based on the use of MSCs loaded with PTX to treat TNBC-affected patients. For this purpose, we in vitro evaluated the viability, migration and colony formation of two TNBC cell lines, namely, MDA-MB-231 and BT549, treated with MSC-PTX conditioned medium (MSC-CM PTX) in comparison with both CM of MSCs not loaded with PTX (CTRL) and free PTX. We observed stronger inhibitory effects on survival, migration and tumorigenicity for MSC-CM PTX than for CTRL and free PTX in TNBC cell lines. Further studies will provide more information about activity and potentially open the possibility of using this new drug delivery vector in the context of a clinical study.


Assuntos
Células-Tronco Mesenquimais , Neoplasias de Mama Triplo Negativas , Humanos , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Linhagem Celular Tumoral , Células-Tronco Mesenquimais/metabolismo
5.
Front Oncol ; 12: 998274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531071

RESUMO

High-dose standard-of-care chemotherapy is the only option for triple-negative breast cancer (TNBC) patients, which eventually die due to metastatic tumors. Recently, metronomic chemotherapy (mCHT) showed advantages in treating TNBCs leading us to investigate the anti-metastatic and anti-angiogenic potential of metronomic 5-Fluorouracil plus Vinorelbine (5-FU+VNR) on endothelial cells (ECs) and TNBCs in comparison to standard treatment (STD). We found that 10-fold lower doses of 5-FU+VNR given mCHT vs. STD inhibits cell proliferation and survival of ECs and TNBC cells. Both schedules strongly affect ECs migration and invasion, but in TNBC cells mCHT is significantly more effective than STD in impairing cell migration and invasion. The two treatments disrupt FAK/VEGFR/VEGF signaling in both ECs and TNBC cells. mCHT, and to a much lesser extent STD treatment, induces apoptosis in ECs, whereas it switches the route of cell death from apoptosis (as induced by STD) to autophagy in TNBC cells. mCHT-treated TNBCs-derived conditioned medium also strongly affects ECs' migration, modulates different angiogenesis-associated proteins, and hampers angiogenesis in matrix sponge in vivo. In conclusion, mCHT administration of 5-FU+VNR is more effective than STD schedule in controlling cell proliferation/survival and migration/invasion of both ECs and TNBC cells and has a strong anti-angiogenic effect. Our data suggest that the stabilization of tumor growth observed in TNBC patients treated with mCHT therapy schedule is likely due not only to direct cytotoxic effects but also to anti-metastatic and anti-angiogenic effects.

6.
J Clin Med ; 11(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012949

RESUMO

Metronomic chemotherapy (mCHT), defined as continuous administration of low-dose chemotherapeutic agents with no or short regular treatment-free intervals, was first introduced to the clinic in international guidelines in 2017, and, since then, has become one of the available strategies for the treatment of advanced breast cancer (ABC). Despite recent successes, many unsolved practical and theoretical issues remain to be addressed. The present review aims to identify the "lights and shadows" of mCHT in preclinical and clinical settings. In the preclinical setting, several findings indicate that one of the most noticeable effects of mCHT is on the tumor microenvironment, which, over the last twenty years, has been demonstrated to be pivotal in supporting tumor cell survival and proliferation. On the other hand, the direct effects on tumor cells have been less well-defined. In addition, critical items to be addressed are the lack of definition of an optimal biological dose (OBD), the method of administration of metronomic schedules, and the recognition and validation of predictive biomarkers. In the clinical context-where mCHT has mainly been used in a metastatic setting-low toxicity is the most well-recognised light of mCHT, whereas the type of study design, the absence of randomised trials and uncertainty in terms of doses and drugs remain among the shadows. In conclusion, growing evidence indicates that mCHT is a suitable treatment option for selected metastatic breast cancer (MBC) patients. Moreover, given its multimodal mechanisms of action, its addition to immunological and targeted therapies might represent a promising new approach to the treatment of MBC. More preclinical data are needed in this regard, which can only be obtained through support for translational research as the key link between basic science and patient care.

7.
Front Oncol ; 12: 944538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992808

RESUMO

In the last decade data piled up indicating that BTK - for twenty years considered as a "private matter" of bone marrow-derived cells - it is expressed and plays important and different roles also outside of the hematopoietic compartment and, most notably, in tumor cells. Initial evidence that BTK plays a critical role in B cell-derived malignancies prompted the chase for specific inhibitors, the forefather of which entered the clinic in a record time and paved the way for an ever increasing number of new molecules to be trialed. The growing interests in BTK also led to the discovery that, in solid tumors, two novel isoforms are mainly expressed and actionable liabilities for target therapy. Remarkably, the different isoforms appear to be involved in different signaling pathways which will have to be attentively specified in order to define the area of therapeutic intervention. In this perspective we briefly summarize the progress made in the last decade in studying BTK and its isoforms in cancer cells and define the open questions to be addressed in order to get the most benefits from its targeting for therapeutic purposes.

8.
Cancer Drug Resist ; 5(1): 36-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35582524

RESUMO

In the last two decades major improvements have been reached in the early diagnosis of colorectal cancer (CRC) and, besides chemotherapy, an ampler choice of therapeutic approaches is now available, including targeted and immunotherapy. Despite that, CRC remains a "big killer" mainly due to the development of resistance to therapies, especially when the disease is diagnosed after it is already metastatic. At the same time, our knowledge of the mechanisms underlying resistance has been rapidly expanding which allows the development of novel therapeutic options in order to overcome it. As far as resistance to chemotherapy is concerned, several contributors have been identified such as: intake/efflux systems upregulation; alterations in the DNA damage response, due to defect in the DNA checkpoint and repair systems; dysregulation of the expression of apoptotic/anti-apoptotic members of the BCL2 family; overexpression of oncogenic kinases; the presence of cancer stem cells; and the composition of the tumoral microenvironment and that of the gut microbiota. Interestingly, several mechanisms are also involved in the resistance to targeted and/or immunotherapy. For example, overexpression and/or hyperactivation and/or amplification of oncogenic kinases can sustain resistance to targeted therapy whereas the composition of the gut microbiota, as well as that of the tumoral niche, and defects in DNA repair systems are crucial for determining the response to immunotherapy. In this review we will make an overview of the main resistance mechanisms identified so far and of the new therapeutic approaches to overcome it.

9.
Front Cardiovasc Med ; 9: 867867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498037

RESUMO

Cardiovascular toxicity in cancer patients receiving chemotherapy remains one of the most undesirable side effects, limiting the choice of the most efficient therapeutic regimen, including combinations of different anticancer agents. Anthracyclines (doxorubicin) and antimetabolites (5-fluorouracil (5-FU), capecitabine) are among the most known agents used in breast cancer and other neoplasms and are associated with cardiotoxic effects. Extra-virgin olive oil (EVOO) is rich in polyphenols endowed with antioxidant cardioprotective activities. Olive mill wastewater (OMWW), a waste product generated by EVOO processing, has been reported to be enriched in polyphenols. In this study, we investigated the activities of polyphenol-rich extract from OMWW, A009, in cooperation with chemotherapy on two breast cancer cell lines, namely, BT459 and MDA-MB-231, in a cardio-oncology perspective. The effects of A009 on cardiac cells were also investigated with and without chemotherapeutic agents. Cell viability was determined on BT459 and MDA-MB-231 (i.e., breast cancer cells) and H9C2 (i.e., rat cardiomyocytes) cells, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A spheroids assay was used as a 3D in vitro model on BT459 and MDA-MB-231 cells. For in vivo studies, the murine sponge assay of angiogenesis was used as a model of breast cancer-associated vascularization. The embryo of Danio rerio (zebrafish) was used to detect the cardioprotective activities of the OMWW. We found that the A009 extract exhibited antiangiogenic activities induced by breast cancer cell supernatants and increased T-cell recruitment in vivo. The combination of the OMWW extracts with doxorubicin or 5-FU limited BT459 and MDA-MB-231 cell viability and the diameter of 3D spheroids, while mitigating their toxic effects on the rat H9C2 cardiomyocytes. Cardioprotective effects were observed by the combination of OMWW extracts with doxorubicin in zebrafish embryos. Finally, in human cardio myocytes, we observed 5-FU-induced upregulation of the inflammatory, senescence-associated cytokine IL6 and p16 genes, which expression was reduced by OMWW treatment. Our study demonstrates that the polyphenol-rich purified OMWW extract A009 combined with cancer chemotherapy could represent a potential candidate for cardiovascular protection in breast cancer patients, while increasing the effects of breast cancer chemotherapy.

10.
Life (Basel) ; 12(3)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35330128

RESUMO

CDK4/6 inhibitors in association with endocrine therapy represent the best therapeutic choice for either endocrine-sensitive or resistant hormone-receptor-positive advanced breast cancer patients. On the contrary, the optimal therapeutic strategy after the failure of CDK4/6 inhibitors-based treatment still remains an open question worldwide. In this review, we analyze the most studied mechanisms of resistance to CDK4/6 inhibitors treatment, as well as the most significant results of retrospective and prospective trials in the setting of progression after CDK4/6 inhibitors, to provide the reader a comprehensive overview from both a preclinical and especially a clinical perspective. In our opinion, an approach based on a deeper knowledge of resistance mechanisms to CDK4/6 inhibitors, but also on a careful analysis of what is done in clinical practice, can lead to a better definition of prospective randomized trials, to implement a personalized sequence approach, based on molecular analyses.

11.
Biomedicines ; 9(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065438

RESUMO

Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of "known" drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations.

12.
Cancers (Basel) ; 13(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066606

RESUMO

Metronomic chemotherapy treatment (mCHT) refers to the chronic administration of low doses chemotherapy that can sustain prolonged, and active plasma levels of drugs, producing favorable tolerability and it is a new promising therapeutic approach in solid and in hematologic tumors. mCHT has not only a direct effect on tumor cells, but also an action on cell microenvironment, by inhibiting tumor angiogenesis, or promoting immune response and for these reasons can be considered a multi-target therapy itself. Here we review the state of the art of mCHT use in some classical tumour types, such as breast and no small cell lung cancer (NSCLC), see what is new regarding most recent data in different cancer types, such as glioblastoma (GBL) and acute myeloid leukemia (AML), and new drugs with potential metronomic administration. Finally, a look at the strategic use of mCHT in the context of health emergencies, or in low -and middle-income countries (LMICs), where access to adequate healthcare is often not easy, is mandatory, as we always need to bear in in mind that equity in care must be a compulsory part of our medical work and research.

13.
Front Cell Dev Biol ; 9: 690365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164404

RESUMO

Bruton's tyrosine kinase (BTK) is a non-receptor intracellular kinase playing a key role in the proliferation and survival of normal and malignant B-lymphocytes. Its targeting by Ibrutinib, the first specific inhibitor, represented a turning point for the therapy of certain types of B-cell leukemias/lymphomas and several more BTK inhibitors are today in the clinic or advanced clinical trials. BTK expression was successively found to occur also outside of the hematopoietic compartment. In fact, we identified p65BTK, a novel 65 kDa isoform lacking an N-term stretch of 86 amino acids (compared to the 77 kDa protein expressed in B cells) as highly expressed in colon cancer patients. We demonstrated that p65BTK is a powerful oncogene acting downstream of the RAS/MAPK pathway and necessary for RAS-mediated transformation. Notably, the kinase domain is conserved and therefore inhibited by the available BTK-targeting drugs (Ibrutinib, Spebrutinib, etc.) which we used to demonstrate that p65BTK is an actionable target in drug-resistant colorectal carcinomas. We found p65BTK expressed also in >50% non-small cell lung cancers (NSCLC) and demonstrated that it is an actionable target in KRAS-mutated/EGFR-wild type drug-resistant NSCLC models (for which no targeted therapy is available). We also reported a significant correlation between p65BTK expression and low-grade tumors and overall survival of patients with grade III gliomas and showed that its targeting induced a significant decrease in the viability of in glioma stem cells. Finally, in ovarian cancer patients, p65BTK expression levels correlate with early relapse and shorter progression-free survival, both indicators of resistance to therapy. Remarkably, Ibrutinib is more effective than standard of care (SOC) therapeutics in in vitro and ex vivo settings. On the whole, our preclinical data indicate that, depending on the tumor type, BTK inhibitors used alone can induce cytotoxicity (gliomas), be more effective than SOC chemotherapy (ovarian cancer) or can kill drug-resistant tumor cells when used in combination with SOC chemotherapy (colon cancer and NSCLC) or targeted therapy (NSCLC and ovarian cancer), thus suggesting that p65BTK may be an actionable target in different solid tumors. In addition, our data also give the proof-of-concept for starting clinical trials using BTK inhibitors, alone or in combination, to improve the therapeutic options for solid tumors treatment.

14.
Heart Vessels ; 35(4): 487-501, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31642980

RESUMO

Early and long-term outcomes in elderly patients who underwent isolated aortic valve replacement (iAVR) are well defined. Conflicting data exist in elderly patients who underwent AVR plus coronary artery bypass grafting (CABG). We sought to evaluate the early and long-term outcomes of combined AVR + CABG in patients older than 75 years of age. From June 1999 to June 2018, 402 patients ≥ 75 years who underwent iAVR (n = 200; 49.7%) or combined AVR plus CABG (n = 202; 50.3%) were retrospectively analysed. AVR + CABG patients were older than iAVR patients (78.5 ± 2.5 vs 77.6 ± 2.8 years; p < 0.0001), with greater co-morbidities and more urgent/emergency surgery. 30-day mortality was 6.5% in the AVR + CABG and 4.5% in the iAVR group (p = 0.38). Multivariate analysis identified EuroSCORE II [odd ratio (OR) 1.13] postoperative stroke (OR 12.53), postoperative low cardiac output syndrome (OR 8.72) and postoperative mechanical ventilation > 48 h (OR 8.92) as independent predictors of 30-day mortality; preoperative cerebrovascular events (OR 3.43), creatinine (OR 7.27) and extracorporeal circulation time (OR 1.01) were independent predictors of in-hospital major adverse cardiovascular and cerebral events (MACCE). Treatment was not an independent predictor of 30-day mortality and in-hospital MACCE. Survival at 1, 5 and 10 years was 94.7 ± 1.6%, 72.6 ± 3.6% and 31.7 ± 4.8% for iAVR patients and 89.1 ± 2.3%, 73.9 ± 3.5% and 37.2 ± 4.8% for AVR + CABG subjects (p = 0.99). Using adjusted Cox regression model, creatinine [hazard ration (HR) 1.50; p = 0.018], COPD (HR 1.97; p = 0.003) and NYHA class (HR 1.39; p < 0.0001) were independent predictors of late mortality; the combined AVR + CABG was not associated with increased risk of late mortality (HR 0.83; p = 0.30). In patients aged ≥ 75 years, combined AVR + CABG was not associated with increased 30-day mortality, in-hospital MACCE and long-term mortality. Surgical revascularization can be safely undertaken at the time of AVR in elderly patients.


Assuntos
Valva Aórtica/cirurgia , Ponte de Artéria Coronária/estatística & dados numéricos , Doenças das Valvas Cardíacas/cirurgia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Ponte de Artéria Coronária/efeitos adversos , Feminino , Doenças das Valvas Cardíacas/mortalidade , Próteses Valvulares Cardíacas/efeitos adversos , Implante de Prótese de Valva Cardíaca/efeitos adversos , Humanos , Modelos Logísticos , Masculino , Análise Multivariada , Complicações Pós-Operatórias/etiologia , Qualidade de Vida , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
15.
J Pathol ; 250(2): 134-147, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31518438

RESUMO

Colorectal cancer (CRC) is the fourth cause of death from cancer worldwide mainly due to the high incidence of drug-resistance. During a screen for new actionable targets in drug-resistant tumours we recently identified p65BTK - a novel oncogenic isoform of Bruton's tyrosine kinase. Studying three different cohorts of patients here we show that p65BTK expression correlates with histotype and cancer progression. Using drug-resistant TP53-null colon cancer cells as a model we demonstrated that p65BTK silencing or chemical inhibition overcame the 5-fluorouracil resistance of CRC cell lines and patient-derived organoids and significantly reduced the growth of xenografted tumours. Mechanistically, we show that blocking p65BTK in drug-resistant cells abolished a 5-FU-elicited TGFB1 protective response and triggered E2F-dependent apoptosis. Taken together, our data demonstrated that targeting p65BTK restores the apoptotic response to chemotherapy of drug-resistant CRCs and gives a proof-of-concept for suggesting the use of BTK inhibitors in combination with 5-FU as a novel therapeutic approach in CRC patients. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Fatores de Transcrição E2F/metabolismo , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Genes p53 , Humanos , Camundongos Nus , Terapia de Alvo Molecular/métodos , Estadiamento de Neoplasias , Organoides/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Methods Mol Biol ; 2066: 125-132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31512213

RESUMO

The ability to introduce controlled modifications of the genome of animals represents an important tool for biomedical and veterinary research. Among transgenic techniques, we describe here the sperm-mediated gene transfer method that is based on the spontaneous ability of sperm cells to bind and internalize exogenous DNA and to carry it to the oocyte during fertilization, producing genetically modified animals.


Assuntos
Animais Geneticamente Modificados/genética , Edição de Genes/métodos , Técnicas de Transferência de Genes , Espermatozoides/crescimento & desenvolvimento , Animais , DNA/genética , Fertilização in vitro/métodos , Masculino , Camundongos , Espermatozoides/metabolismo
17.
Cancers (Basel) ; 11(6)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238520

RESUMO

BACKGROUND: Bruton's tyrosine kinase (BTK) is involved in the immune response and its deficiency impairs B cell maturation. We evaluated the expression of a novel BTK isoform, p65BTK, in colorectal cancer (CRC), to identify its impact on survival. MATERIALS AND METHODS: This retrospective study evaluated 87 consecutive stage III CRC patients treated at the National Cancer Institute of Aviano (1999-2017). Multiple specimens were collected and analyzed for staining intensity and percentage of tumor cells positive for p65BTK. Prognostic impact was tested by univariate Cox regression analysis. RESULTS: After a median follow-up of 82.59 months, median disease-free survival (DFS) and overall survival (OS) were 11.67 months and 31.33 months, respectively. Interestingly, 10% of patients did not express p65BTK. For the immunohistochemistry IHC intensity 1, the best cutoff point was 1% of p65BTK positivity; for IHC intensity 2, it was 50%; and for IHC intensity 3, it was 80%. Through univariate analysis, patients with highly expressed p65BTK (IHC intensity 3 and ≥80%) were shown to have the worst prognosis in terms of DFS (HR: 6.23; p = 0.005; 95% C.I. 1.75-22.79) and OS (HR: 2.54; p = 0.025; 95% C.I. 1.12-5.76). CONCLUSIONS: p65BTK is frequently expressed in CRC and, if highly expressed, is an unfavourable prognostic factor. However, further confirmation is needed and its potential targeting needs to be studied.

18.
J Exp Clin Cancer Res ; 38(1): 260, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31200752

RESUMO

BACKGROUND: Lung cancer is still the main cause of cancer death worldwide despite the availability of targeted therapies and immune-checkpoint inhibitors combined with chemotherapy. Cancer cell heterogeneity and primary or acquired resistance mechanisms cause the elusive behaviour of this cancer and new biomarkers and active drugs are urgently needed to overcome these limitations. p65BTK, a novel isoform of the Bruton Tyrosine Kinase may represent a new actionable target in non-small cell lung cancer (NSCLC). METHODS: p65BTK expression was evaluated by immunohistochemistry in 382 NSCLC patients with complete clinico-pathological records including smoking habit, ALK and EGFR status, and in metastatic lymph nodes of 30 NSCLC patients. NSCLC cell lines mutated for p53 and/or a component of the RAS/MAPK pathway and primary lung cancer-derived cells from Kras/Trp53 null mice were used as a preclinical model. The effects of p65BTK inhibition by BTK Tyrosine Kinase Inhibitors (TKIs) (Ibrutinib, AVL-292, RN486) and first-generation EGFR-TKIs (Gefitinib, Erlotinib) on cell viability were evaluated by MTT. The effects of BTK-TKIs on cell growth and clonogenicity were assessed by crystal violet and colony assays, respectively. Cell toxicity assays were performed to study the effect of the combination of non-toxic concentrations of BTK-TKIs with EGFR-TKIs and standard-of-care (SOC) chemotherapy (Cisplatin, Gemcitabine, Pemetrexed). RESULTS: p65BTK was significantly over-expressed in EGFR-wild type (wt) adenocarcinomas (AdC) from non-smoker patients and its expression was also preserved at the metastatic site. p65BTK was also over-expressed in cell lines mutated for KRAS or for a component of the RAS/MAPK pathway and in tumors from Kras/Trp53 null mice. BTK-TKIs were more effective than EGFR-TKIs in decreasing cancer cell viability and significantly impaired cell proliferation and clonogenicity. Moreover, non-toxic doses of BTK-TKIs re-sensitized drug-resistant NSCLC cell lines to both target- and SOC therapy, independently from EGFR/KRAS status. CONCLUSIONS: p65BTK results as an emerging actionable target in non-smoking EGFR-wt AdC, also at advanced stages of disease. Notably, these patients are not eligible for EGFR-TKIs-based therapy due to a lack of EGFR mutation. The combination of BTK-TKIs with EGFR-TKIs is cytotoxic for EGFR-wt/KRAS-mutant/p53-null tumors and BTK-TKIs re-sensitizes drug-resistant NSCLC to SOC chemotherapy. Therefore, our data suggest that adding BTK-TKIs to SOC chemotherapy and EGFR-targeted therapy may open new avenues for clinical trials in currently untreatable NSCLC.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Tirosina Quinase da Agamaglobulinemia/metabolismo , Biomarcadores Tumorais , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Sinergismo Farmacológico , Receptores ErbB/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Estadiamento de Neoplasias , Isoformas de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
19.
Front Mol Neurosci ; 12: 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30733667

RESUMO

Bruton's tyrosine-kinase (BTK) is a non-receptor tyrosine kinase recently associated with glioma tumorigenesis and a novel prognostic marker for poor survival in patients with glioma. The p65BTK is a novel BTK isoform involved in different pathways of drug resistance of solid tumors, thus we aimed to investigate the expression and the putative role of p65BTK in tumors of the central nervous system (CNS). We selected a large cohort of patients with glial tumors (n = 71) and analyzed the expression of p65BTK in different histotypes and correlation with clinical parameters. Sections were stained with glial fibrillary acidic protein (GFAP), p53, epidermal growth factor receptor (EGFR), S100, vimentin, and epithelial membrane antigen (EMA) antibodies. Glioma stem cell (GSC) lines, isolated from glioblastoma multiforme (GBM), were treated with different concentrations of ibrutinib, a specific inhibitor of BTK, in order to evaluate their metabolic activity, mitotic index and mortality. Moreover, an orthotopic xenotransplant of GSC from human GBM was used to evaluate the expression of p65BTK in the brain of immunodeficient mice. p65BTK was expressed in GSC and in gemistocytes in human gliomas at different histological grade. We found a significant correlation between BTK expression and low-grade (LG) tumors (p ≤ 0.05) and overall survival (OS) of patients with grade III gliomas (p ≤ 0.05), suggestive of worst prognosis. Interestingly, the expression of p65BTK remained restricted exclusively to gemistocytic cells in the xenograft mouse model. Ibrutinib administration significantly reduced metabolic activity and mitotic index and increased mortality in GSC, highlighting the specific role of p65BTK in cell proliferation and survival. In conclusion, our data demonstrated that p65BTK is expressed in glioma tumors, restricted to gemistocytic cells, has a key role in GSC and has a bad prognostic value, thus highlighting the importance of future research for targeted therapy of human gliomas.

20.
Oncotarget ; 9(44): 27448-27459, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29937997

RESUMO

Triple Negative Breast Cancer (TNBC) is an aggressive neoplasia with median Overall Survival (OS) less than two years. Despite the availability of new drugs, the chance of survival of these patients did not increase. The combination of low doses of drugs in a metronomic schedule showed efficacy in clinical trials, exhibiting an anti-proliferative and anti-tumour activity. In Victor-2 study we recently evaluated a new metronomic combination (mCHT) of Capecitabine (CAPE) and Vinorelbine (VNR) in breast cancer patients showing a disease control rate with a median Progression-Free Survival (PFS) of 4.7 months in 28 TNBC patients. Here in Victor-0 study, we examined the effect of mCHT vs standard (STD) schedule of administration of different combinations of 5-Fluorouracil (5FU), the active metabolite of CAPE, and VNR in TNBC cell lines MDA-MB-231 and BT-549. A significant anti-proliferative activity was observed in cells treated with metronomic vs STD administration of 5FU or VNR alone. Combination of the two drugs showed an additive inhibitor effect on cell growth in both cell lines. Moreover, after exposure of cells to 5FU and VNR under mCHT or conventional schedule of administration we also observed a downregulation of chemoresistance factor Bcl-2, changes in pro-apoptotic protein Bax and in cleaved effector caspase-3 and increased expression of LC3A/B autophagy protein. Our results therefore suggest that molecular mechanisms implicated in apoptosis and autophagy as well as the cross-talk between these two forms of cell death in MDA-MB-231 and BT-549 cells treated with 5FU and VNR is dose- and schedule-dependent and provide some insights about the roles of autophagy and senescence in 5FU/VNR-induced cell death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA