Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 15(1): 5032, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866770

RESUMO

Maintenance of genome integrity requires tight control of DNA damage response (DDR) signalling and repair, with phosphorylation and ubiquitination representing key elements. How these events are coordinated to achieve productive DNA repair remains elusive. Here we identify the ubiquitin-conjugating enzyme UBE2D3 as a regulator of ATM kinase-induced DDR that promotes non-homologous end-joining (NHEJ) at telomeres. UBE2D3 contributes to DDR-induced chromatin ubiquitination and recruitment of the NHEJ-promoting factor 53BP1, both mediated by RNF168 upon ATM activation. Additionally, UBE2D3 promotes NHEJ by limiting RNF168 accumulation and facilitating ATM-mediated phosphorylation of KAP1-S824. Mechanistically, defective KAP1-S824 phosphorylation and telomeric NHEJ upon UBE2D3-deficiency are linked to RNF168 hyperaccumulation and aberrant PP2A phosphatase activity. Together, our results identify UBE2D3 as a multi-level regulator of NHEJ that orchestrates ATM and RNF168 activities. Moreover, they reveal a negative regulatory circuit in the DDR that is constrained by UBE2D3 and consists of RNF168- and phosphatase-mediated restriction of KAP1 phosphorylation.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA por Junção de Extremidades , Transdução de Sinais , Proteína 28 com Motivo Tripartido , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Ubiquitinação , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fosforilação , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Células HEK293 , Telômero/metabolismo , Dano ao DNA , Cromatina/metabolismo , Animais
2.
Clin Cancer Res ; 29(8): 1631-1642, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36689546

RESUMO

PURPOSE: DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy. EXPERIMENTAL DESIGN: We characterized the response to Polθ inhibition in combination with ionizing radiation in different cancer cell models in vitro and in vivo. RESULTS: Here, we show that ART558 and ART899, two novel and specific allosteric inhibitors of the Polθ DNA polymerase domain, potently radiosensitize tumor cells, particularly when combined with fractionated radiation. Importantly, noncancerous cells were not radiosensitized by Polθ inhibition. Mechanistically, we show that the radiosensitization caused by Polθ inhibition is most effective in replicating cells and is due to impaired DNA damage repair. We also show that radiosensitization is still effective under hypoxia, suggesting that these inhibitors may help overcome hypoxia-induced radioresistance. In addition, we describe for the first time ART899 and characterize it as a potent and specific Polθ inhibitor with improved metabolic stability. In vivo, the combination of Polθ inhibition using ART899 with fractionated radiation is well tolerated and results in a significant reduction in tumor growth compared with radiation alone. CONCLUSIONS: These results pave the way for future clinical trials of Polθ inhibitors in combination with radiotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/radioterapia , Linhagem Celular Tumoral
3.
Nat Commun ; 13(1): 5167, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075897

RESUMO

Protection of stalled replication forks is essential to prevent genome instability, a major driving force of tumorigenesis. Several key regulators of DNA double-stranded break (DSB) repair, including 53BP1 and RIF1, have been implicated in fork protection. MAD2L2, also known as REV7, plays an important role downstream of 53BP1/RIF1 by counteracting resection at DSBs in the recently discovered shieldin complex. The ability to bind and counteract resection at exposed DNA ends at DSBs makes MAD2L2/shieldin a prime candidate for also suppressing nucleolytic processing at stalled replication forks. However, the function of MAD2L2/shieldin outside of DNA repair is unknown. Here we address this by using genetic and single-molecule analyses and find that MAD2L2 is required for protecting and restarting stalled replication forks. MAD2L2 loss leads to uncontrolled MRE11-dependent resection of stalled forks and single-stranded DNA accumulation, which causes irreparable genomic damage. Unexpectedly, MAD2L2 limits resection at stalled forks independently of shieldin, since fork protection remained unaffected by shieldin loss. Instead, MAD2L2 cooperates with the DNA polymerases REV3L and REV1 to promote fork stability. Thus, MAD2L2 suppresses aberrant nucleolytic processing both at DSBs and stalled replication forks by differentially engaging shieldin and REV1/REV3L, respectively.


Assuntos
Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Instabilidade Genômica , Humanos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo
4.
Sci Rep ; 8(1): 3198, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453404

RESUMO

The synthesis of middle-to-late-replicating DNA can be affected independently of the rest of the genome by down-regulating the tumor suppressor PREP1 (PKNOX1). Indeed, DNA combing shows that PREP1 down-regulation affects DNA replication rate, increases the number of simultaneously firing origins and the asymmetry of DNA replication, leading to DNA damage. Genome-wide analysis of replication timing by Repli-seq shows that, upon PREP1 down-regulation, 25% of the genome is replicated earlier in the S-phase. The targeted DNA sequences correspond to Lamin-Associated Domains (LADs), and include late-replicating (LRRs) and temporal transition regions (TTRs). Notably, the distribution of PREP1 DNA binding sites and of its target genes indicates that DNA replication defects are independent of the overall PREP1 transcriptional activity. Finally, PREP1 down-regulation causes a substantial decrease in Lamin B1 levels. This suggests that DNA is released from the nuclear lamina earlier than in the control cells and is available for replication, thus explaining timing defects and DNA damage.This is the first evidence that the replication timing of a specific fraction of the human genome is affected by PREP1 tumor suppressor. This previously unknown function might significantly contribute to the genomic instability observed in human tumors.


Assuntos
Período de Replicação do DNA/fisiologia , Genes Supressores de Tumor/fisiologia , Instabilidade Genômica , Proteínas de Homeodomínio/fisiologia , Sítios de Ligação , Dano ao DNA , Período de Replicação do DNA/genética , Regulação da Expressão Gênica , Genoma Humano , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Lamina Tipo B/metabolismo
6.
Cell Death Dis ; 8(7): e2956, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28749464

RESUMO

The cohesin complex is mutated in cancer and in a number of rare syndromes collectively known as Cohesinopathies. In the latter case, cohesin deficiencies have been linked to transcriptional alterations affecting Myc and its target genes. Here, we set out to understand to what extent the role of cohesins in controlling cell cycle is dependent on Myc expression and activity. Inactivation of the cohesin complex by silencing the RAD21 subunit led to cell cycle arrest due to both transcriptional impairment of Myc target genes and alterations of replication forks, which were fewer and preferentially unidirectional. Ectopic activation of Myc in RAD21 depleted cells rescued Myc-dependent transcription and promoted S-phase entry but failed to sustain S-phase progression due to a strong replicative stress response, which was associated to a robust DNA damage response, DNA damage checkpoint activation and synthetic lethality. Thus, the cohesin complex is dispensable for Myc-dependent transcription but essential to prevent Myc-induced replicative stress. This suggests the presence of a feed-forward regulatory loop where cohesins by regulating Myc level control S-phase entry and prevent replicative stress.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Biologia Computacional , Replicação do DNA/genética , Replicação do DNA/fisiologia , Citometria de Fluxo , Imunofluorescência , Humanos , Immunoblotting , Proteínas Proto-Oncogênicas c-myc/genética , Coesinas
7.
EMBO J ; 34(10): 1371-84, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25820263

RESUMO

The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy-controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the response of primary human cells and murine hematopoietic stem cells (HSCs) to aneuploidy induction and the role of telomeres and the telomerase in this process. The study shows that aneuploidy induces replication stress at telomeres leading to telomeric DNA damage and p53 activation. This results in p53/Rb-dependent, premature senescence of human fibroblast, and in the depletion of hematopoietic cells in telomerase-deficient mice. Endogenous telomerase expression in HSCs and enforced expression of telomerase in human fibroblasts are sufficient to abrogate aneuploidy-induced replication stress at telomeres and the consequent induction of premature senescence and hematopoietic cell depletion. Together, these results identify telomerase as an aneuploidy survival factor in mammalian cells based on its capacity to alleviate telomere replication stress in response to aneuploidy induction.


Assuntos
Aneuploidia , Telomerase/metabolismo , Telômero/metabolismo , Animais , Senescência Celular/genética , Senescência Celular/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Telomerase/genética , Telômero/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Nat Commun ; 5: 3649, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24728135

RESUMO

The ability of PRC1 and PRC2 to promote proliferation is a main feature that links polycomb (PcG) activity to cancer. PcGs silence the expression of the tumour suppressor locus Ink4a/Arf, whose products positively regulate pRb and p53 functions. Enhanced PcG activity is a frequent feature of human tumours, and PcG inhibition has been proposed as a strategy for cancer treatment. However, the recurrent inactivation of pRb/p53 responses in human cancers raises a question regarding the ability of PcG proteins to affect cellular proliferation independently from this checkpoint. Here we demonstrate that PRCs regulate cellular proliferation and transformation independently of the Ink4a/Arf-pRb-p53 pathway. We provide evidence that PRCs localize at replication forks, and that loss of their function directly affects the progression and symmetry of DNA replication forks. Thus, we have identified a novel activity by which PcGs can regulate cell proliferation independently of major cell cycle restriction checkpoints.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Replicação do DNA/fisiologia , Proteínas do Grupo Polycomb/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/genética , Células Cultivadas , Ensaio Cometa , Feminino , Immunoblotting , Camundongos , Camundongos Nus , Proteínas do Grupo Polycomb/genética
9.
EMBO J ; 31(13): 2839-51, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22569128

RESUMO

In normal human somatic cells, telomere dysfunction causes cellular senescence, a stable proliferative arrest with tumour suppressing properties. Whether telomere dysfunction-induced senescence (TDIS) suppresses cancer growth in humans, however, is unknown. Here, we demonstrate that multiple and distinct human cancer precursor lesions, but not corresponding malignant cancers, are comprised of cells that display hallmarks of TDIS. Furthermore, we demonstrate that oncogenic signalling, frequently associated with initiating cancer growth in humans, dramatically affected telomere structure and function by causing telomeric replication stress, rapid and stochastic telomere attrition, and consequently telomere dysfunction in cells that lack hTERT activity. DNA replication stress induced by drugs also resulted in telomere dysfunction and cellular senescence in normal human cells, demonstrating that telomeric repeats indeed are hypersensitive to DNA replication stress. Our data reveal that TDIS, accelerated by oncogene-induced DNA replication stress, is a biological response of cells in human cancer precursor lesions and provide strong evidence that TDIS is a critical tumour suppressing mechanism in humans.


Assuntos
Senescência Celular/fisiologia , Oncogenes/fisiologia , Telômero/fisiologia , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Replicação do DNA/fisiologia , Humanos , Oncogenes/efeitos dos fármacos , Oncogenes/genética , Inibidores da Síntese de Proteínas/farmacologia , Puromicina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Telômero/efeitos dos fármacos , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA