Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Oncol ; 13: 999810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910630

RESUMO

Significant improvements in the survival rates of paediatric cancer have been achieved over the past decade owing to recent advances in therapeutic and diagnostic strategies. However, disease progression and relapse remain a major challenge for the clinical management of paediatric angiosarcoma. Comprehensive genomic profiling of these rare tumours using high-throughput sequencing technologies may improve patient stratification and identify actionable biomarkers for therapeutic intervention. Here, we describe the clinical, histopathological, immunohistochemical and molecular profile of a novel and precision medicine-informed case where a KHDRBS1-NTRK3 fusion determined by next-generation sequencing-based comprehensive genomic profiling led to complete and sustained remission (clinical and radiological response) in an otherwise incurable disease. Our patient represents the first paediatric angiosarcoma harbouring a targetable NTRK3 fusion in the literature and demonstrates the first example of targeting this alteration in angiosarcoma using larotrectinib, an NTRK inhibitor. Clinical and radiological remission was achieved in under two months of therapy, and the patient is currently in complete remission, 4 month after stopping larotrectinib therapy, which was given over 17 months with only mild side effects reported. Therefore, this remarkable case exemplifies the true essence of precision-based care by incorporating conventional pathology with the why, when, and how to test for rare oncogenic drivers and agnostic biomarkers in paediatric angiosarcoma.

3.
Cancer Metastasis Rev ; 40(4): 989-1033, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35029792

RESUMO

Despite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.


Assuntos
Ecossistema , Neoplasias , Carcinogênese/metabolismo , Humanos , Neoplasias/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA