Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 13(1): 16671, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794075

RESUMO

The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem- affinity purification from kidney-induced Xenopus animal caps, we identified single-stranded DNA binding protein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Pronefro , Animais , Xenopus laevis/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Rim/metabolismo , Desenvolvimento Embrionário/genética , Morfogênese/genética , Pronefro/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Mamíferos/metabolismo
2.
bioRxiv ; 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37090653

RESUMO

The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem-affinity purification from kidney-induced Xenopus animal caps, we identified s ingle- s tranded DNA b inding p rotein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.

3.
Proc Natl Acad Sci U S A ; 119(15): e2109508119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394881

RESUMO

CHARGE syndrome is a complex developmental disorder caused by mutations in the chromodomain helicase DNA-binding protein-7 (CHD7) and characterized by retarded growth and malformations in the heart and nervous system. Despite the public health relevance of this disorder, relevant cellular pathways and targets of CHD7 that relate to disease pathology are still poorly understood. Here we report that chd-7, the nematode ortholog of Chd7, is required for dauer morphogenesis, lifespan determination, stress response, and body size determination. Consistent with our discoveries, we found chd-7 to be allelic to scd-3, a previously identified dauer suppressor from the DAF-7/ tumor growth factor-ß (TGF-ß) pathway. Epistatic analysis places CHD-7 at the level of the DAF-3/DAF-5 complex, but we found that CHD-7 also directly impacts the expression of multiple components of this pathway. Transcriptomic analysis revealed that chd-7 mutants fail to repress daf-9 for execution of the dauer program. In addition, CHD-7 regulates the DBL-1/BMP pathway components and shares roles in male tail development and cuticle synthesis. To explore a potential conserved function for chd-7 in vertebrates, we used Xenopus laevis embryos, an established model to study craniofacial development. Morpholino-mediated knockdown of Chd7 led to a reduction in col2a1 messenger RNA (mRNA) levels, a collagen whose expression depends on TGF-ß signaling. Both embryonic lethality and craniofacial defects in Chd7-depleted tadpoles were partially rescued by overexpression of col2a1 mRNA. We suggest that Chd7 has conserved roles in regulation of the TGF-ß signaling pathway and pathogenic Chd7 could lead to a defective extracellular matrix deposition.


Assuntos
Síndrome CHARGE , Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Larva , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
4.
Sci Rep ; 11(1): 6607, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758327

RESUMO

Gastrulation is a key event in animal embryogenesis during which germ layer precursors are rearranged and the embryonic axes are established. Cell polarization is essential during gastrulation, driving asymmetric cell division, cell movements, and cell shape changes. The furry (fry) gene encodes an evolutionarily conserved protein with a wide variety of cellular functions, including cell polarization and morphogenesis in invertebrates. However, little is known about its function in vertebrate development. Here, we show that in Xenopus, Fry plays a role in morphogenetic processes during gastrulation, in addition to its previously described function in the regulation of dorsal mesoderm gene expression. Using morpholino knock-down, we demonstrate a distinct role for Fry in blastopore closure and dorsal axis elongation. Loss of Fry function drastically affects the movement and morphological polarization of cells during gastrulation and disrupts dorsal mesoderm convergent extension, responsible for head-to-tail elongation. Finally, we evaluate a functional interaction between Fry and NDR1 kinase, providing evidence of an evolutionarily conserved complex required for morphogenesis.


Assuntos
Movimento Celular , Gastrulação , Proteínas Repressoras/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Feminino , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas de Xenopus/genética , Xenopus laevis
5.
Sci Rep ; 8(1): 16029, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375416

RESUMO

The molecular events driving specification of the kidney have been well characterized. However, how the initial kidney field size is established, patterned, and proportioned is not well characterized. Lhx1 is a transcription factor expressed in pronephric progenitors and is required for specification of the kidney, but few Lhx1 interacting proteins or downstream targets have been identified. By tandem-affinity purification, we isolated FRY like transcriptional coactivator (Fryl), one of two paralogous genes, fryl and furry (fry), have been described in vertebrates. Both proteins were found to interact with the Ldb1-Lhx1 complex, but our studies focused on Lhx1/Fry functional roles, as they are expressed in overlapping domains. We found that Xenopus embryos depleted of fry exhibit loss of pronephric mesoderm, phenocopying the Lhx1-depleted animals. In addition, we demonstrated a synergism between Fry and Lhx1, identified candidate microRNAs regulated by the pair, and confirmed these microRNA clusters influence specification of the kidney. Therefore, our data shows that a constitutively-active Ldb1-Lhx1 complex interacts with a broadly expressed microRNA repressor, Fry, to establish the kidney field.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Rim/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , MicroRNAs/genética , Organogênese/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Padronização Corporal/genética , Linhagem Celular , Cromatografia Líquida , Ordem dos Genes , Vetores Genéticos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Espectrometria de Massas em Tandem , Xenopus laevis
6.
Dev Neurobiol ; 77(11): 1308-1320, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28719101

RESUMO

The olfactory epithelium (OE) has the remarkable capability to constantly replace olfactory receptor neurons (ORNs) due to the presence of neural stem cells (NSCs). For this reason, the OE provides an excellent model to study neurogenesis and neuronal differentiation. In the present work, we induced neuronal degeneration in the OE of Xenopus laevis larvae by bilateral axotomy of the olfactory nerves. We found that axotomy induces specific- neuronal death through apoptosis between 24 and 48h post-injury. In concordance, there was a progressive decrease of the mature-ORN marker OMP until it was completely absent 72h post-injury. On the other hand, neurogenesis was evident 48h post-injury by an increase in the number of proliferating basal cells as well as NCAM-180- GAP-43+ immature neurons. Mature ORNs were replenished 21 days post-injury and the olfactory function was partially recovered, indicating that new ORNs were integrated into the olfactory bulb glomeruli. Throughout the regenerative process no changes in the expression pattern of the neurotrophin Brain Derivate Neurotrophic Factor were observed. Taken together, this work provides a sequential analysis of the neurodegenerative and subsequent regenerative processes that take place in the OE following axotomy. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1308-1320, 2017.


Assuntos
Axotomia , Degeneração Neural/etiologia , Degeneração Neural/patologia , Mucosa Olfatória/patologia , Traumatismos do Nervo Olfatório/patologia , Regeneração/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica/fisiologia , Queratina-2/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Proteína de Marcador Olfatório/metabolismo , Traumatismos do Nervo Olfatório/etiologia , Recuperação de Função Fisiológica/fisiologia , Olfato/fisiologia , Fatores de Tempo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA