Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 14(6): e11530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895566

RESUMO

The capacity of forests to sequester carbon in both above- and belowground compartments is a crucial tool to mitigate rising atmospheric carbon concentrations. Belowground carbon storage in forests is strongly linked to soil microbial communities that are the key drivers of soil heterotrophic respiration, organic matter decomposition and thus nutrient cycling. However, the relationships between tree diversity and soil microbial properties such as biomass and respiration remain unclear with inconsistent findings among studies. It is unknown so far how the spatial configuration and soil depth affect the relationship between tree richness and microbial properties. Here, we studied the spatial distribution of soil microbial properties in the context of a tree diversity experiment by measuring soil microbial biomass and respiration in subtropical forests (BEF-China experiment). We sampled soil cores at two depths at five locations along a spatial transect between the trees in mono- and hetero-specific tree pairs of the native deciduous species Liquidambar formosana and Sapindus saponaria. Our analyses showed decreasing soil microbial biomass and respiration with increasing soil depth and distance from the tree in mono-specific tree pairs. We calculated belowground overyielding of soil microbial biomass and respiration - which is higher microbial biomass or respiration than expected from the monocultures - and analysed the distribution patterns along the transect. We found no general overyielding across all sampling positions and depths. Yet, we encountered a spatial pattern of microbial overyielding with a significant microbial overyielding close to L. formosana trees and microbial underyielding close to S. saponaria trees. We found similar spatial patterns across microbial properties and depths that only differed in the strength of their effects. Our results highlight the importance of small-scale variations of tree-tree interaction effects on soil microbial communities and functions and are calling for better integration of within-plot variability to understand biodiversity-ecosystem functioning relationships.

2.
New Phytol ; 242(4): 1691-1703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659111

RESUMO

Understanding the complex interactions between trees and fungi is crucial for forest ecosystem management, yet the influence of tree mycorrhizal types, species identity, and diversity on tree-tree interactions and their root-associated fungal communities remains poorly understood. Our study addresses this gap by investigating root-associated fungal communities of different arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) tree species pairs (TSPs) in a subtropical tree diversity experiment, spanning monospecific, two-species, and multi-species mixtures, utilizing Illumina sequencing of the ITS2 region. The study reveals that tree mycorrhizal type significantly impacts the alpha diversity of root-associated fungi in monospecific stands. Meanwhile, tree species identity's influence is modulated by overall tree diversity. Tree-related variables and spatial distance emerged as major drivers of variations in fungal community composition. Notably, in multi-species mixtures, compositional differences between root fungal communities of AM and EcM trees diminish, indicating a convergence of fungal communities irrespective of mycorrhizal type. Interestingly, dual mycorrhizal fungal communities were observed in these multi-species mixtures. This research underscores the pivotal role of mycorrhizal partnerships and the interplay of biotic and abiotic factors in shaping root fungal communities, particularly in varied tree diversity settings, and its implications for effective forest management and biodiversity conservation.


Assuntos
Biodiversidade , Florestas , Micobioma , Micorrizas , Raízes de Plantas , Especificidade da Espécie , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Raízes de Plantas/microbiologia
3.
Nat Plants ; 10(5): 760-770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609675

RESUMO

Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.


Assuntos
Herbivoria , Solo , Solo/química , Plantas , Ecossistema , Clima Desértico , Animais
6.
Sci Adv ; 9(40): eadi2362, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801499

RESUMO

Tree species diversity and mycorrhizal associations play a central role for forest productivity, but factors driving positive biodiversity-productivity relationships remain poorly understood. In a biodiversity experiment manipulating tree diversity and mycorrhizal associations, we examined the roles of above- and belowground processes in modulating wood productivity in young temperate tree communities and potential underlying mechanisms. We found that tree species richness, but not mycorrhizal associations, increased forest productivity by enhancing aboveground structural complexity within communities. Structurally complex communities were almost twice as productive as structurally simple stands, particularly when light interception was high. We further demonstrate that overyielding was largely explained by positive net biodiversity effects on structural complexity with functional variation in shade tolerance and taxonomic diversity being key drivers of structural complexity in mixtures. Consideration of stand structural complexity appears to be a crucial element in predicting carbon sequestration in the early successional stages of mixed-species forests.


Assuntos
Florestas , Árvores , Biodiversidade , Madeira , Sequestro de Carbono
7.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220366, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899014

RESUMO

Artificial light at night (ALAN) is increasing worldwide, but its effects on the soil system have not yet been investigated. We tested the influence of experimental manipulation of ALAN on two taxa of soil communities (microorganisms and soil nematodes) and three aspects of soil functioning (soil basal respiration, soil microbial biomass and carbon use efficiency) over four and a half months in a highly controlled Ecotron facility. We show that during peak plant biomass, increasing ALAN reduced plant biomass and was also associated with decreased soil water content. This further reduced soil respiration under high ALAN at peak plant biomass, but microbial communities maintained stable biomass across different levels of ALAN and times, demonstrating higher microbial carbon use efficiency under high ALAN. While ALAN did not affect microbial community structure, the abundance of plant-feeding nematodes increased and there was homogenization of nematode communities under higher levels of ALAN, indicating that soil communities may be more vulnerable to additional disturbances at high ALAN. In summary, the effects of ALAN reach into the soil system by altering soil communities and ecosystem functions, and these effects are mediated by changes in plant productivity and soil water content at peak plant biomass. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Microbiota , Nematoides , Animais , Ecossistema , Poluição Luminosa , Solo/química , Biomassa , Água , Plantas , Carbono , Microbiologia do Solo
8.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220359, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899019

RESUMO

Artificial light at night (ALAN) is predicted to have far-reaching consequences for natural ecosystems given its influence on organismal physiology and behaviour, species interactions and community composition. Movement and predation are fundamental ecological processes that are of critical importance to ecosystem functioning. The natural movements and foraging behaviours of nocturnal invertebrates may be particularly sensitive to the presence of ALAN. However, we still lack evidence of how these processes respond to ALAN within a community context. We assembled insect communities to quantify their movement activity and predation rates during simulated Moon cycles across a gradient of diffuse night-time illuminance including the full range of observed skyglow intensities. Using radio frequency identification, we tracked the movements of insects within a fragmented grassland Ecotron experiment. We additionally quantified predation rates using prey dummies. Our results reveal that even low-intensity skyglow causes a temporal shift in movement activity from day to night, and a spatial shift towards open habitats at night. Changes in movement activity are associated with indirect shifts in predation rates. Spatio-temporal shifts in movement and predation have important implications for ecological networks and ecosystem functioning, highlighting the disruptive potential of ALAN for global biodiversity and the provision of ecosystem services. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Ecossistema , Poluição Luminosa , Animais , Comportamento Predatório , Invertebrados , Luz , Insetos
9.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220358, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899022

RESUMO

Artificial light at night (ALAN) affects many areas of the world and is increasing globally. To date, there has been limited and inconsistent evidence regarding the consequences of ALAN for plant communities, as well as for the fitness of their constituent species. ALAN could be beneficial for plants as they need light as energy source, but they also need darkness for regeneration and growth. We created model communities composed of 16 plant species sown, exposed to a gradient of ALAN ranging from 'moonlight only' to conditions like situations typically found directly underneath a streetlamp. We measured plant community composition and its production (biomass), as well as functional traits of three plant species from different functional groups (grasses, herbs, legumes) in two separate harvests. We found that biomass was reduced by 33% in the highest ALAN treatment compared to the control, Shannon diversity decreased by 43% and evenness by 34% in the first harvest. Some species failed to establish in the second harvest. Specific leaf area, leaf dry matter content and leaf hairiness responded to ALAN. These responses suggest that plant communities will be sensitive to increasing ALAN, and they flag a need for plant conservation activities that consider impending ALAN scenarios. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Pradaria , Poluição Luminosa , Ecossistema , Biomassa , Plantas , Luz
10.
Natl Sci Rev ; 10(7): nwad109, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37575691

RESUMO

Ever-growing human population and nutritional demands, supply chain disruptions, and advancing climate change have led to the realization that changes in diversity and system performance are intimately linked. Moreover, diversity and system performance depend on heterogeneity. Mitigating changes in system performance and promoting sustainable living conditions requires transformative decisions. Here, we introduce the heterogeneity-diversity-system performance (HDP) nexus as the conceptual basis upon which to formulate transformative decisions. We suggest that managing the heterogeneity of systems will best allow diversity to provide multiple benefits to people. Based on ecological theory, we pose that the HDP nexus is broadly applicable across systems, disciplines, and sectors, and should thus be considered in future decision making as a way to have a more sustainable global future.

11.
Microbiol Spectr ; 11(2): e0457822, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36951585

RESUMO

Soil microbial communities play crucial roles in the earth's biogeochemical cycles. Yet, their genomic potential for nutrient cycling in association with tree mycorrhizal type and tree-tree interactions remained unclear, especially in diverse tree communities. Here, we studied the genomic potential of soil fungi and bacteria with arbuscular (AM) and ectomycorrhizal (EcM) conspecific tree species pairs (TSPs) at three tree diversity levels in a subtropical tree diversity experiment (BEF-China). The soil fungi and bacteria of the TSPs' interaction zone were characterized by amplicon sequencing, and their subcommunities were determined using a microbial interkingdom co-occurrence network approach. Their potential genomic functions were predicted with regard to the three major nutrients carbon (C), nitrogen (N), and phosphorus (P) and their combinations. We found the microbial subcommunities that were significantly responding to different soil characteristics. The tree mycorrhizal type significantly influenced the functional composition of these co-occurring subcommunities in monospecific stands and two-tree-species mixtures but not in mixtures with more than three tree species (here multi-tree-species mixtures). Differentiation of subcommunities was driven by differentially abundant taxa producing different sets of nutrient cycling enzymes across the tree diversity levels, predominantly enzymes of the P (n = 11 and 16) cycles, followed by the N (n = 9) and C (n = 9) cycles, in monospecific stands and two-tree-species mixtures, respectively. Fungi of the Agaricomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes and bacteria of the Verrucomicrobia, Acidobacteria, Alphaproteobacteria, and Actinobacteria were the major differential contributors (48% to 62%) to the nutrient cycling functional abundances of soil microbial communities across tree diversity levels. Our study demonstrated the versatility and significance of microbial subcommunities in different soil nutrient cycling processes of forest ecosystems. IMPORTANCE Loss of multifunctional microbial communities can negatively affect ecosystem services, especially forest soil nutrient cycling. Therefore, exploration of the genomic potential of soil microbial communities, particularly their constituting subcommunities and taxa for nutrient cycling, is vital to get an in-depth mechanistic understanding for better management of forest soil ecosystems. This study revealed soil microbes with rich nutrient cycling potential, organized in subcommunities that are functionally resilient and abundant. Such microbial communities mainly found in multi-tree-species mixtures associated with different mycorrhizal partners can foster soil microbiome stability. A stable and functionally rich soil microbiome is involved in the cycling of nutrients, such as carbon, nitrogen, and phosphorus, and their combinations could have positive effects on ecosystem functioning, including increased forest productivity. The new findings could be highly relevant for afforestation and reforestation regimes, notably in the face of growing deforestation and global warming scenarios.


Assuntos
Microbiota , Micorrizas , Micorrizas/genética , Árvores/microbiologia , Solo/química , Microbiologia do Solo , Bactérias/genética , Fósforo , Nitrogênio , Carbono
12.
Glob Chang Biol ; 29(6): 1437-1450, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36579623

RESUMO

Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity-ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch ß-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, ß-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the ß-diversity of different trophic levels, as well as the ß-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and ß-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.


Assuntos
Ecossistema , Florestas , Humanos , Filogenia , Biodiversidade , Agricultura Florestal
13.
Science ; 378(6622): 915-920, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36423285

RESUMO

Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.


Assuntos
Biodiversidade , Herbivoria , Gado , Mudança Climática , Solo
14.
Nat Commun ; 13(1): 4195, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858886

RESUMO

Soil microorganisms are central to sustain soil functions and services, like carbon and nutrient cycling. Currently, we only have a limited understanding of the spatial-temporal dynamics of soil microorganisms, restricting our ability to assess long-term effects of climate and land-cover change on microbial roles in soil biogeochemistry. This study assesses the temporal trends in soil microbial biomass carbon and identifies the main drivers of biomass change regionally and globally to detect the areas sensitive to these environmental factors. Here, we combined a global soil microbial biomass carbon data set, random forest modelling, and environmental layers to predict spatial-temporal dynamics of microbial biomass carbon stocks from 1992 to 2013. Soil microbial biomass carbon stocks decreased globally by 3.4 ± 3.0% (mean ± 95% CI) between 1992 and 2013 for the predictable regions, equivalent to 149 Mt being lost over the period, or ~1‰ of soil C. Northern areas with high soil microbial carbon stocks experienced the strongest decrease, mostly driven by increasing temperatures. In contrast, land-cover change was a weaker global driver of change in microbial carbon, but had, in some cases, important regional effects.


Assuntos
Carbono , Solo , Biomassa , Ciclo do Carbono , Ecossistema , Solo/química , Microbiologia do Solo
15.
Environ Microbiol ; 24(9): 4236-4255, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34327789

RESUMO

There is limited knowledge on how the association of trees with different mycorrhizal types shapes soil microbial communities in the context of changing tree diversity levels. We used arbuscular (AM) and ectomycorrhizal (EcM) tree species as con- and heterospecific tree species pairs (TSPs), which were established in plots of three tree diversity levels including monocultures, two-species mixtures and multi-tree species mixtures in a tree diversity experiment in subtropical China. We found that the tree mycorrhizal type had a significant effect on fungal but not bacterial alpha diversity. Furthermore, only EcM but not AM TSPs fungal alpha diversity increased with tree diversity, and the differences between AM and EcM TSPs disappeared in multi-species mixtures. Tree mycorrhizal type, tree diversity and their interaction had significant effects on fungal community composition. Neither fungi nor bacteria showed any significant compositional variation in TSPs located in multi-species mixtures. Accordingly, the most influential taxa driving the tree mycorrhizal differences at low tree diversity were not significant in multi-tree species mixtures. Collectively, our results indicate that tree mycorrhizal type is an important factor determining the diversity and community composition of soil microbes, and higher tree diversity levels promote convergence of the soil microbial communities. SIGNIFICANCE STATEMENT: More than 90% of terrestrial plants have symbiotic associations with mycorrhizal fungi which could influence the coexisting microbiota. Systematic understanding of the individual and interactive effects of tree mycorrhizal type and tree species diversity on the soil microbiota is crucial for the mechanistic comprehension of the role of microbes in forest soil ecological processes. Our tree species pair (TSP) concept coupled with random sampling within and across the plots, allowed us the unbiased assessment of tree mycorrhizal type and tree diversity effects on the tree-tree interaction zone soil microbiota. Unlike in monocultures and two-species mixtures, we identified species-rich and converging fungal and bacterial communities in multi-tree species mixtures. Consequently, we recommend planting species-rich mixtures of EcM and AM trees, for afforestation and reforestation regimes. Specifically, our findings highlight the significance of tree mycorrhizal type in studying 'tree diversity - microbial diversity - ecosystem function' relationships.


Assuntos
Microbiota , Micorrizas , Bactérias/genética , Florestas , Plantas , Solo , Microbiologia do Solo , Árvores/microbiologia
16.
Oecologia ; 197(2): 297-311, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34091787

RESUMO

Diversity loss has been shown to change the soil community; however, little is known about long-term consequences and underlying mechanisms. Here, we investigated how nematode communities are affected by plant species richness and whether this is driven by resource quantity or quality in 15-year-old plant communities of a long-term grassland biodiversity experiment. We extracted nematodes from 93 experimental plots differing in plant species richness, and measured above- and belowground plant biomass production and soil organic carbon concentrations (Corg) as proxies for resource quantity, as well as C/Nleaf ratio and specific root length (SRL) as proxies for resource quality. We found that nematode community composition and diversity significantly differed among plant species richness levels. This was mostly due to positive plant diversity effects on the abundance and genus richness of bacterial-feeding, omnivorous, and predatory nematodes, which benefited from higher shoot mass and soil Corg in species-rich plant communities, suggesting control via resource quantity. In contrast, plant-feeding nematodes were negatively influenced by shoot mass, probably due to higher top-down control by predators, and were positively related to SRL and C/Nleaf, indicating control via resource quality. The decrease of the grazing pressure ratio (plant feeders per root mass) with plant species richness indicated a higher accumulation of plant-feeding nematodes in species-poor plant communities. Our results, therefore, support the hypothesis that soil-borne pathogens accumulate in low-diversity communities over time, while soil mutualists (bacterial-feeding, omnivorous, predatory nematodes) increase in abundance and richness in high-diversity plant communities, which may contribute to the widely-observed positive plant diversity-productivity relationship.


Assuntos
Nematoides , Solo , Animais , Biodiversidade , Biomassa , Carbono , Plantas
17.
Ecol Appl ; 31(5): e02325, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33709490

RESUMO

Soil microbial community functions are essential indicators of ecosystem multifunctionality in managed land-use systems. Going forward, the development of adaptation strategies and predictive models under future climate scenarios will require a better understanding of how both land-use and climate disturbances influence soil microbial functions over time. Between March and November 2018, we assessed the effects of climate change on the magnitude and temporal stability of soil basal respiration, soil microbial biomass and soil functional diversity across a range of land-use types and intensities in a large-scale field experiment. Soils were sampled from five common land-use types including conventional and organic croplands, intensive and extensive meadows, and extensive pastures, under ambient and projected future climate conditions (reduced summer precipitation and increased temperature) at the Global Change Experimental Facility (GCEF) in Bad Lauchstädt, Germany. Land-use and climate treatment interaction effects were significant in September, a month when precipitation levels slightly rebounded following a period of drought in central Germany: compared to ambient climate, in future climate treatments, basal respiration declined in pastures and increased in intensive meadows, functional diversity declined in pastures and croplands, and respiration-to-biomass ratio increased in intensive and extensive meadows. Low rainfall between May and August likely strengthened soil microbial responses toward the future climate treatment in September. Although microbial biomass showed declining levels in extensive meadows and pastures under future climate treatments, overall, microbial function magnitudes were higher in these land-use types compared to croplands, indicating that improved management practices could sustain high microbial ecosystem functioning in future climates. In contrast to our hypothesis that more disturbed land-use systems would have destabilized microbial functions, intensive meadows and organic croplands showed stabilized soil microbial biomass compared to all other land-use types, suggesting that temporal stability, in addition to magnitude-based measurements, may be useful for revealing context-dependent effects on soil ecosystem functioning.


Assuntos
Microbiota , Solo , Biomassa , Mudança Climática , Ecossistema , Microbiologia do Solo
19.
ISME Commun ; 1(1): 41, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37938251

RESUMO

Microbial respiration is critical for soil carbon balance and ecosystem functioning. Previous studies suggest that plant diversity influences soil microbial communities and their respiration. Yet, the linkages between tree diversity, microbial biomass, microbial diversity, and microbial functioning have rarely been explored. In this study, we measured two microbial functions (microbial physiological potential, and microbial respiration), together with microbial biomass, microbial taxonomic and functional profiles, and soil chemical properties in a tree diversity experiment in South China, to disentangle how tree diversity affects microbial respiration through the modifications of the microbial community. Our analyses show a significant positive effect of tree diversity on microbial biomass (+25% from monocultures to 24-species plots), bacterial diversity (+12%), and physiological potential (+12%). In addition, microbial biomass and physiological potential, but not microbial diversity, were identified as the key drivers of microbial respiration. Although soil chemical properties strongly modulated soil microbial community, tree diversity increased soil microbial respiration by increasing microbial biomass rather than changing microbial taxonomic or functional diversity. Overall, our findings suggest a prevalence of microbial biomass over diversity in controlling soil carbon dynamics.

20.
Nat Commun ; 11(1): 3870, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747621

RESUMO

Soils harbor a substantial fraction of the world's biodiversity, contributing to many crucial ecosystem functions. It is thus essential to identify general macroecological patterns related to the distribution and functioning of soil organisms to support their conservation and consideration by governance. These macroecological analyses need to represent the diversity of environmental conditions that can be found worldwide. Here we identify and characterize existing environmental gaps in soil taxa and ecosystem functioning data across soil macroecological studies and 17,186 sampling sites across the globe. These data gaps include important spatial, environmental, taxonomic, and functional gaps, and an almost complete absence of temporally explicit data. We also identify the limitations of soil macroecological studies to explore general patterns in soil biodiversity-ecosystem functioning relationships, with only 0.3% of all sampling sites having both information about biodiversity and function, although with different taxonomic groups and functions at each site. Based on this information, we provide clear priorities to support and expand soil macroecological research.


Assuntos
Biodiversidade , Ecossistema , Microbiologia do Solo , Solo/parasitologia , Animais , Bactérias/classificação , Bactérias/metabolismo , Biomassa , Clima , Fungos/classificação , Fungos/metabolismo , Geografia , Concentração de Íons de Hidrogênio , Nematoides/classificação , Nematoides/metabolismo , Oligoquetos/classificação , Oligoquetos/metabolismo , Solo/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA