Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells Dev ; 25(8): 622-35, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26916040

RESUMO

Cell therapy with adult mesenchymal stem cells (MSCs) is a promising approach to regenerative medicine and autoimmune diseases. There are various approaches to improve the efficacy of MSC-based therapeutics, and MSC preparation as spheroidal aggregates, or MSC spheroids, is a novel preparatory and delivery method. Spheroid formation induces a dramatic change in the gene expression profile of MSCs. Self-activation of interleukin-1 (IL1) signaling was shown to be upstream of both pro- and anti-inflammatory genes in MSC spheroids, but the molecular pathways that initiate IL1 signaling remain unknown. As bone morphogenic protein (BMP)2 upregulation precedes that of IL1B expression during spheroid formation, we hypothesized that BMP2 signaling triggers IL1 signaling in MSC spheroids. Contrary to expectations, BMP2 signaling decreased expression of IL1B and downstream genes in a SMAD6-dependent manner. Conversely, IL1B signaling enhanced BMP2 expression. Another major difference between two-dimensional (2D) monolayer culture and three-dimensional (3D) spheroid culture is the Young's elasticity modulus, or stiffness, of the materials surrounding the cells, as there is a million-fold difference between a plastic surface for standard 2D culture (GPa) and 3D spheroidal aggregates (0.1 kPa). We tested another hypothesis that soft elasticity-associated mechano-signaling initiates the gene expression change during spheroid formation. Results showed that both BMP2 expression and inflammatory signaling are upregulated in an elasticity-associated signaling-dependent manner in MSCs. Lastly, BMP2 signaling enhanced cell survival and cell spreading of MSC spheroids. In summary, our study suggests that soft elasticity and BMP2 signaling are critical for MSC spheroids.


Assuntos
Proteína Morfogenética Óssea 2/fisiologia , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Agregação Celular , Sobrevivência Celular , Células Cultivadas , Meios de Cultura , Elasticidade , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/fisiologia , Esferoides Celulares/metabolismo , Transcriptoma
2.
Stem Cells Int ; 2016: 9176357, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26649054

RESUMO

Compared with traditional 2D adherent cell culture, 3D spheroidal cell aggregates, or spheroids, are regarded as more physiological, and this technique has been exploited in the field of oncology, stem cell biology, and tissue engineering. Mesenchymal stem cells (MSCs) cultured in spheroids have enhanced anti-inflammatory, angiogenic, and tissue reparative/regenerative effects with improved cell survival after transplantation. Cytoskeletal reorganization and drastic changes in cell morphology in MSC spheroids indicate a major difference in mechanophysical properties compared with 2D culture. Enhanced multidifferentiation potential, upregulated expression of pluripotency marker genes, and delayed replicative senescence indicate enhanced stemness in MSC spheroids. Furthermore, spheroid formation causes drastic changes in the gene expression profile of MSC in microarray analyses. In spite of these significant changes, underlying molecular mechanisms and signaling pathways triggering and sustaining these changes are largely unknown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA