Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(21): 9831-9841, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38739498

RESUMO

Aluminum fluoride (AlF) complexes have been used over the past decade to incorporate [18F]fluoride into large biomolecules in a highly selective fashion by using relatively facile conditions. However, despite their widespread usage, there are a large number of variations in the reaction conditions, without a definitive discussion provided on the mechanism to understand how these changes would alter the end result. Herein, we report a detailed mechanistic investigation of the reaction, using a mixture of theoretical studies, fluorine-19 and fluorine-18 chemistry, and the consequences it has on the efficient clinical translation of AlF-containing imaging agents.


Assuntos
Compostos de Alumínio , Quelantes , Fluoretos , Fluoretos/química , Compostos de Alumínio/química , Quelantes/química , Quelantes/síntese química , Radioisótopos de Flúor/química , Estrutura Molecular
2.
J Labelled Comp Radiopharm ; 64(12): 466-476, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34382259

RESUMO

The trifluoromethyl group is a prominent motif in biologically active compounds and therefore of great interest for the labeling with the positron emitter fluorine-18 for positron emission tomography (PET) imaging. Multiple labeling strategies have been explored in the past; however, most of them suffer from low molar activity due to precursor degradation. In this study, the potential of 1-(difluoromethyl)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium triflate as precursor for the synthesis of the [18 F]trifluoromethylation building block [18 F]fluoroform with high molar activity was investigated. The triazolium precursor was reacted under various conditions with [18 F]fluoride, providing [18 F]fluoroform with radiochemical yields (RCY) and molar activities (Am ) comparable and even superior with already existing methods. Highest molar activities (Am = 153 ± 14 GBq/µmol, dc, EOS) were observed for the automated procedure on the Neptis® perform module. Due to its easy handling and good RCY and Am in the [18 F]fluoroform synthesis, the triazolium precursor is a valuable alternative to already known precursors.


Assuntos
Compostos Radiofarmacêuticos
3.
Org Biomol Chem ; 19(19): 4320-4326, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33904536

RESUMO

α-Ketoamides are an important key functional group and have been used as versatile and valuable intermediates and synthons in a variety of functional group transformations. Synthetic methods for making aryl α-ketoamides as drug candidates have been greatly improved through metal-catalyzed aerobic oxidative amidations. However, the preparation of alkyl α-ketoamides through metal-catalyzed aerobic oxidative amidations has not been reported because generating α-ketoamides from aliphatic ketones with two α-carbons theoretically provides two distinct α-ketoamides. Our strategy is to activate the α-carbon by introducing an N-substituent at one of the two α-positions. The key to this strategy is how heterocyclic compounds such as triazoles and imidazoles affect the selectivity of the synthesis of the alkyl α-ketoamides. From this basic concept, and by optimizing the reaction and elucidating the mechanism of the synthesis of aryl α-ketoamides via a copper-catalyzed aerobic oxidative amidation, we prepared fourteen aliphatic α-ketoamides in high yields (48-84%).

4.
RSC Adv ; 11(11): 6099-6106, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35423150

RESUMO

The synthesis of fluorine-18 labeled fluoroform with high molar activity has grown in importance for the development of fluorine-18 labeled aryl-CF3 radiopharmaceuticals that are useful as diagnostic radiotracers for the powerful technique of positron emission tomography (PET). We designed a strategy of synthesizing fluorine-18 labeled fluoroform from N1-difluoromethyl-N3-methyltriazolium triflate (1) via SN2 fluorination without stable fluorine isotope scrambling. Fluoroform was generated at rt in 10 min by fluorination of the triazolium precursor with TBAF (6 equiv.). We propose three routes (a), (b), and (c) for this fluorination. Quantum chemical calculations have been carried out to elucidate the mechanism of experimentally observed nucleophilic attack of fluoride at difluoromethyl group via route (a), not N3-methyl via route (b). 1H and 19F NMR studies using deuterium source have been performed to examine the competition between SN2 fluorination (route (a)) and the formation of difluorocarbene (route (c)). The observed superiority of SN2 pathway to formation of difluorocarbene in the reaction of the precursor using CsF in (CD3CN/(CD3)3COD (17.8 : 1)) gives the possibility of preparing the fluorine-18 labeled fluoroform in high molar activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA