Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34835724

RESUMO

Using density functional theory calculations, atomic and electronic structure of defects in monolayer GeS were investigated by focusing on the effects of vacancies and substitutional atoms. We chose group IV or chalcogen elements as substitutional ones, which substitute for Ge or S in GeS. It was found that the bandgap of GeS with substitutional atoms is close to that of pristine GeS, while the bandgap of GeS with Ge or S vacancies was smaller than that of pristine GeS. In terms of formation energy, monolayer GeS with Ge vacancies is more stable than that with S vacancies, and notably GeS with Ge substituted with Sn is most favorable within the range of chemical potential considered. Defects affect the piezoelectric properties depending on vacancies or substitutional atoms. Especially, GeS with substitutional atoms has almost the same piezoelectric stress coefficients eij as pristine GeS while having lower piezoelectric strain coefficients dij  but still much higher than other 2D materials. It is therefore concluded that Sn can effectively heal Ge vacancy in GeS, keeping high piezoelectric strain coefficients.

2.
Sci Adv ; 6(23): eaaz5180, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537496

RESUMO

There have been rapidly increasing demands for flexible lighting apparatus, and micrometer-scale light-emitting diodes (LEDs) are regarded as one of the promising lighting sources for deformable device applications. Herein, we demonstrate a method of creating a deformable LED, based on remote heteroepitaxy of GaN microrod (MR) p-n junction arrays on c-Al2O3 wafer across graphene. The use of graphene allows the transfer of MR LED arrays onto a copper plate, and spatially separate MR arrays offer ideal device geometry suitable for deformable LED in various shapes without serious device performance degradation. Moreover, remote heteroepitaxy also allows the wafer to be reused, allowing reproducible production of MR LEDs using a single substrate without noticeable device degradation. The remote heteroepitaxial relation is determined by high-resolution scanning transmission electron microscopy, and the density functional theory simulations clarify how the remote heteroepitaxy is made possible through graphene.

3.
Sci Adv ; 6(10): eaay4958, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32181347

RESUMO

Hexagonal boron nitride (hBN) is an insulating two-dimensional (2D) material with a large bandgap. Although known for its interfacing with other 2D materials and structural similarities to graphene, the potential use of hBN in 2D electronics is limited by its insulating nature. Here, we report atomically sharp twin boundaries at AA'/AB stacking boundaries in chemical vapor deposition-synthesized few-layer hBN. We find that the twin boundary is composed of a 6'6' configuration, showing conducting feature with a zero bandgap. Furthermore, the formation mechanism of the atomically sharp twin boundaries is suggested by an analogy with stacking combinations of AA'/AB based on the observations of extended Klein edges at the layer boundaries of AB-stacked hBN. The atomically sharp AA'/AB stacking boundary is promising as an ultimate 1D electron channel embedded in insulating pristine hBN. This study will provide insights into the fabrication of single-hBN electronic devices.

4.
Nano Lett ; 20(4): 2443-2451, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32191480

RESUMO

In optoelectronic devices based on two-dimensional (2D) semiconductor heterojunctions, the efficient charge transport of photogenerated carriers across the interface is a critical factor to determine the device performances. Here, we report an unexplored approach to boost the optoelectronic device performances of the WSe2-MoS2 p-n heterojunctions via the monolithic-oxidation-induced doping and resultant modulation of the interface band alignment. In the proposed device, the atomically thin WOx layer, which is directly formed by layer-by-layer oxidation of WSe2, is used as a charge transport layer for promoting hole extraction. The use of the ultrathin oxide layer significantly enhanced the photoresponsivity of the WSe2-MoS2 p-n junction devices, and the power conversion efficiency increased from 0.7 to 5.0%, maintaining the response time. The enhanced characteristics can be understood by the formation of the low Schottky barrier and favorable interface band alignment, as confirmed by band alignment analyses and first-principle calculations. Our work suggests a new route to achieve interface contact engineering in the heterostructures toward realizing high-performance 2D optoelectronics.

5.
ACS Appl Mater Interfaces ; 11(11): 10959-10966, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30807091

RESUMO

There have been a few studies of heterojunctions composed of two-dimensional transition-metal dichalcogenides (TMDs) and an oxide layer, but such studies of high-performance electric and optoelectronic devices are essential. Such heterojunctions with low-resistivity metal contacts are needed by the electronics industry to fabricate efficient diodes and photovoltaic devices. Here, a van der Waals heterojunction composed of p-type black phosphorus (p-BP) and n-type indium-gallium-zinc oxide (n-IGZO) films with low-resistivity metal contacts is reported, and it demonstrates high rectification. The low off-state leakage current in the thick IGZO film accounts for the high rectification ratio in a sharp interface of p-BP/n-IGZO devices. For electrostatic gate control, an ionic liquid is introduced to achieve a high rectification ratio of 9.1 × 104. The photovoltaic measurements of p-BP/n-IGZO show fast rise and decay times, significant open-circuit voltage and short-circuit current, and a high photoresponsivity of 418 mA/W with a substantial external quantum efficiency of 12.1%. The electric and optoelectronic characteristics of TMDs/oxide layer van der Waals heterojunctions are attractive for industrial applications in the near future.

6.
Phys Chem Chem Phys ; 20(39): 25240-25245, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30270382

RESUMO

For utilization of two-dimensional (2D) materials as electronic devices, their mixed-dimensional heterostructures with three-dimensional (3D) materials are receiving much attention. In this study, we have investigated the atomic and electronic structures of the 2D/3D heterojunction between MoS2 and Si(100) using density functional theory calculations; especially, we focus on the contact behavior dependence on the interfacial structures of heterojunctions by considering two types of surface termination of Si(100) surfaces. Calculations show that MoS2 and clean Si(100) form an almost n-type ohmic contact with a very small Schottky barrier height (SBH) due to strong covalent bonds between them, and that the contact between MoS2 and H-covered Si(100) makes a p-n heterojunction with weak van der Waals interactions. Such a difference in contact behaviors can be explained by different electric dipole formation at the heterojunction interfaces. Overall, it is concluded that contact properties can be varied depending on the interfacial structures of 2D(MoS2)/3D(Si) semiconductor heterojunctions.

7.
Sci Rep ; 8(1): 12966, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154432

RESUMO

Black Phosphorus (BP) is an excellent material from the post graphene era due to its layer dependent band gap, high mobility and high Ion/Ioff. However, its poor stability in ambient poses a great challenge for its practical and long-term usage. The optical visualization of the oxidized BP is the key and the foremost step for its successful passivation from the ambience. Here, we have conducted a systematic study of the oxidation of the BP and developed a technique to optically identify the oxidation of the BP using Liquid Crystal (LC). It is interesting to note that we found that the rapid oxidation of the thin layers of the BP makes them disappear and can be envisaged by using the alignment of the LC. The molecular dynamics simulations also proved the preferential alignment of the LC on the oxidized BP. We believe that this simple technique will be effective in passivation efforts of the BP, and will enable it for exploitation of its properties in the field of electronics.

8.
ACS Appl Mater Interfaces ; 10(15): 13150-13157, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29578329

RESUMO

Heterostructures comprising two-dimensional (2D) semiconductors fabricated by individual stacking exhibit interesting characteristics owing to their 2D nature and atomically sharp interface. As an emerging 2D material, black phosphorus (BP) nanosheets have drawn much attention because of their small band gap semiconductor characteristics along with high mobility. Stacking structures composed of p-type BP and n-type transition metal dichalcogenides can produce an atomically sharp interface with van der Waals interaction which leads to p-n diode functionality. In this study, for the first time, we fabricated a heterojunction p-n diode composed of BP and WS2. The rectification effects are examined for monolayer, bilayer, trilayer, and multilayer WS2 flakes in our BP/WS2 van der Waals heterojunction diodes and also verified by density function theory calculations. We report superior functionalities as compared to other van der Waals heterojunction, such as efficient gate-dependent static rectification of 2.6 × 104, temperature dependence, thickness dependence of rectification, and ideality factor of the device. The temperature dependence of Zener breakdown voltage and avalanche breakdown voltage were analyzed in the same device. Additionally, superior optoelectronic characteristics such as photoresponsivity of 500 mA/W and external quantum efficiency of 103% are achieved in the BP/WS2 van der Waals p-n diode, which is unprecedented for BP/transition metal dichalcogenides heterostructures. The BP/WS2 van der Waals p-n diodes have a profound potential to fabricate rectifiers, solar cells, and photovoltaic diodes in 2D semiconductor electronics and optoelectronics.

9.
Phys Rev Lett ; 103(21): 216102, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-20366054

RESUMO

We investigate the mechanism of dihydrogen adsorption onto Ca cation centers, which has been the significant focus of recent research for hydrogen storage. We particularly concentrate on reliability of commonly used density-functional theories, in comparison with correlated wave function theories. It is shown that, irrespective of the chosen exchange-correlation potentials, density-functional theories result in unphysical binding of H2 molecules onto Ca1+ system. This suggests that several previous publications could contain a serious overestimation of storage capacity at least in part of their results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA