RESUMO
African swine fever virus (ASFV) is the causative agent of the highly lethal African swine fever disease that affects domestic pigs and wild boars. In spite of the rapid spread of the virus worldwide, there is no licensed vaccine available. The lack of a suitable cell line for ASFV propagation hinders the development of a safe and effective vaccine. For ASFV propagation, primary swine macrophages and monocytes have been widely studied. However, obtaining these cells can be time-consuming and expensive, making them unsuitable for mass vaccine production. The goal of this study was to validate the suitability of novel CA-CAS-01-A (CAS-01) cells, which was identified as a highly permissive cell clone for ASFV replication in the MA-104 parental cell line for live attenuated vaccine development. Through a screening experiment, maximum ASFV replication was observed in the CAS-01 cell compared to other sub-clones of MA-104 with 14.89 and log10 7.5 ± 0.15 Ct value and TCID50/ml value respectively. When CAS-01 cells are inoculated with ASFV, replication of ASFV was confirmed by Ct value for ASFV DNA, HAD50/ml assay, TCID50/ml assay, and cytopathic effects and hemadsoption were observed similar to those in primary porcine alveolar macrophages after 5th passage. Additionally, we demonstrated stable replication and adaptation of ASFV over the serial passage. These results suggest that CAS-01 cells will be a valuable and promising cell line for ASFV isolation, replication, and development of live attenuated vaccines.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas/genética , Proteínas Virais/genética , Sus scrofa , Desenvolvimento de Vacinas , Linhagem CelularRESUMO
DP96R of African swine fever virus (ASFV), also known as uridine kinase (UK), encodes a virulence-associated protein. Previous studies have examined DP96R along with other genes in an effort to create live attenuated vaccines. While experiments in pigs have explored the impact of DP96R on the pathogenicity of ASFV, the precise molecular mechanism underlying this phenomenon remains unknown. Here, we describe a novel molecular mechanism by which DP96R suppresses interferon regulator factor-3 (IRF3)-mediated antiviral immune responses. DP96R interacts with a crucial karyopherin (KPNA) binding site within IRF3, disrupting the KPNA-IRF3 interaction and consequently impeding the translocation of IRF3 to the nucleus. Under this mechanistic basis, the ectopic expression of DP96R enhances the replication of DNA and RNA viruses by inhibiting the production of IFNs, whereas DP96R knock-down resulted in higher IFNs and IFN-stimulated gene (ISG) transcription during ASFV infection. Collectively, these findings underscore the pivotal role of DP96R in inhibiting IFN responses and increase our understanding of the relationship between DP96R and the virulence of ASFV.
Assuntos
Vírus da Febre Suína Africana , Fator Regulador 3 de Interferon , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Interferons/metabolismo , Suínos , Proteínas Virais/metabolismo , Virulência , Fatores de Virulência/genética , Fator Regulador 3 de Interferon/metabolismo , Humanos , Interferon Tipo I/metabolismoRESUMO
IMPORTANCE: African swine fever virus (ASFV), the only known DNA arbovirus, is the causative agent of African swine fever (ASF), an acutely contagious disease in pigs. ASF has recently become a crisis in the pig industry in recent years, but there are no commercially available vaccines. Studying the immune evasion mechanisms of ASFV proteins is important for the understanding the pathogenesis of ASFV and essential information for the development of an effective live-attenuated ASFV vaccines. Here, we identified ASFV B175L, previously uncharacterized proteins that inhibit type I interferon signaling by targeting STING and 2'3'-cGAMP. The conserved B175L-zf-FCS motif specifically interacted with both cGAMP and the R238 and Y240 amino acids of STING. Consequently, this interaction interferes with the interaction of cGAMP and STING, thereby inhibiting downstream signaling of IFN-mediated antiviral responses. This novel mechanism of B175L opens a new avenue as one of the ASFV virulent genes that can contribute to the advancement of ASFV live-attenuated vaccines.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Proteínas de Membrana , Nucleotídeos Cíclicos , Suínos , Proteínas Virais , Animais , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/patogenicidade , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/antagonistas & inibidores , Nucleotídeos Cíclicos/metabolismo , Suínos/imunologia , Suínos/virologia , Vacinas Atenuadas/imunologia , Proteínas Virais/metabolismo , Vacinas Virais/imunologia , Interações entre Hospedeiro e MicrorganismosRESUMO
Circulating tumor cells (CTCs) display antigenic heterogeneity between epithelial and mesenchymal phenotypes. However, most current CTC isolation methods rely on EpCAM (epithelial cell adhesion molecule) antibodies. This study introduces a more efficient CTC isolation technique utilizing both EpCAM and vimentin (mesenchymal cell marker) antibodies, alongside a lateral magnetophoretic microseparator. The effectiveness of this approach was assessed by isolating CTCs from prostate (n = 17) and pancreatic (n = 5) cancer patients using EpCAM alone, vimentin alone, and both antibodies together. Prostate cancer patients showed an average of 13.29, 11.13, and 27.95 CTCs/mL isolated using EpCAM alone, vimentin alone, and both antibodies, respectively. For pancreatic cancer patients, the averages were 1.50, 3.44, and 10.82 CTCs/mL with EpCAM alone, vimentin alone, and both antibodies, respectively. Combining antibodies more than doubled CTC isolation compared to single antibodies. Interestingly, EpCAM antibodies were more effective for localized prostate cancer, while vimentin antibodies excelled in metastatic prostate cancer isolation. Moreover, vimentin antibodies outperformed EpCAM antibodies for all pancreatic cancer patients. These results highlight that using both epithelial and mesenchymal antibodies with the lateral magnetophoretic microseparator significantly enhances CTC isolation efficiency, and that antibody choice may vary depending on cancer type and stage.
RESUMO
African swine fever virus (ASFV) is a highly pathogenic swine DNA virus with high mortality that causes African swine fever (ASF) in domestic pigs and wild boars. For efficient viral infection, ASFV has developed complex strategies to evade key components of antiviral innate immune responses. However, the immune escape mechanism of ASFV remains unclear. Upon ASFV infection, cyclic GMP-AMP (2',3'-cGAMP) synthase (cGAS), a cytosolic DNA sensor, recognizes ASFV DNA and synthesizes the second messenger 2',3'-cGAMP, which triggers interferon (IFN) production to interfere with viral replication. In this study, we demonstrated a novel immune evasion mechanism of ASFV EP364R and C129R, which blocks cellular cyclic 2',3'-cGAMP-mediated antiviral responses. ASFV EP364R and C129R with nuclease homology inhibit IFN-mediated responses by specifically interacting with 2',3'-cGAMP and exerting their phosphodiesterase (PDE) activity to cleave 2',3'-cGAMP. Particularly notable is that ASFV EP364R had a region of homology with the stimulator of interferon genes (STING) protein containing a 2',3'-cGAMP-binding motif and point mutations in the Y76S and N78A amino acids of EP364R that impaired interaction with 2',3'-cGAMP and restored subsequent antiviral responses. These results highlight a critical role for ASFV EP364R and C129R in the inhibition of IFN responses and could be used to develop ASFV live attenuated vaccines. IMPORTANCE African swine fever (ASF) is a highly contagious hemorrhagic disease in domestic pigs and wild boars caused by African swine fever virus (ASFV). ASF is a deadly epidemic disease in the global pig industry, but no drugs or vaccines are available. Understanding the pathogenesis of ASFV is essential to developing an effective live attenuated ASFV vaccine, and investigating the immune evasion mechanisms of ASFV is crucial to improve the understanding of its pathogenesis. In this study, for the first time, we identified the EP364R and C129R, uncharacterized proteins that inhibit type I interferon signaling. ASFV EP364R and C129R specifically interacted with 2',3'-cGAMP, the mammalian second messenger, and exerted phosphodiesterase activity to cleave 2',3'-cGAMP. In this study, we discovered a novel mechanism by which ASFV inhibits IFN-mediated antiviral responses, and our findings can guide the understanding of ASFV pathogenesis and the development of live attenuated ASFV vaccines.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Vírus da Febre Suína Africana , Evasão da Resposta Imune , Proteínas de Membrana , Nucleotídeos Cíclicos , Nucleotidiltransferases , Transdução de Sinais , Proteínas Virais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/metabolismo , Animais , Interferons/antagonistas & inibidores , Interferons/imunologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/imunologia , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Sus scrofa/virologia , Suínos , Vacinas Atenuadas , Proteínas Virais/metabolismo , Vacinas ViraisRESUMO
BACKGROUND: Prostate-specific antigen (PSA) is used for diagnosing prostate cancer, but does not reflect the characteristics of prostate cancer cells to allow assessment of cancer progression. PSA mRNA and circulating tumor cells (CTCs) could be potential biomarkers. However, the relationship between serum PSA levels and PSA mRNA in CTCs is unclear, and this study aimed to investigate this relationship. METHODS: Healthy donors (HD, n = 9), and patients with local non-metastatic stage prostate cancer (n = 30), metastatic hormone-sensitive prostate cancer (mHSPC, n = 10), and metastatic castration-resistant prostate cancer (mCRPC, n = 75), were included. The expression of PSA mRNA in CTCs was measured by droplet digital PCR. Serum PSA (ng/mL) levels and PSA mRNA (copies/µL) in CTCs were then compared using Spearman correlation coefficients. RESULTS: PSA mRNA expression in CTCs was observed in 30% (9/30) of patients with localized cancer, 60.0% (6/10) among patients with mHSPC, 65.3% (49/75) among patients with mCRPC, and 0% among patients with HD, indicating that the detection rate of PSA mRNA increased with cancer stage. PSA mRNA expression in CTCs also increased from localized to metastatic stages. PSA mRNA levels rapidly increased in the mHSPC and mCRPC stages. Interestingly, PSA mRNA expression in CTCs was not correlated with serum PSA levels at the localized stage (R = 0.064, P = 0.512). However, there were significant correlations between serum PSA levels and PSA mRNA expression in mHSPC (R = 0.532, P = 0.041) and mCRPC (R = 0.566, P = 0.025). The number of CTCs isolated from mHSPC and mCRPC was not proportional to serum PSA and PSA mRNA levels. CONCLUSION: CTC PSA mRNA has the potential to be used as a biomarker to complement serum PSA protein analysis or replace serum PSA in metastatic stages of prostate cancer.