Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Plant Cell Environ ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741272

RESUMO

Excess soil salinity significantly impairs plant growth and development. Our previous reports demonstrated that the core circadian clock oscillator GIGANTEA (GI) negatively regulates salt stress tolerance by sequestering the SALT OVERLY SENSITIVE (SOS) 2 kinase, an essential component of the SOS pathway. Salt stress induces calcium-dependent cytoplasmic GI degradation, resulting in activation of the SOS pathway; however, the precise molecular mechanism governing GI degradation during salt stress remains enigmatic. Here, we demonstrate that salt-induced calcium signals promote the cytoplasmic partitioning of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), leading to the 26S proteasome-dependent degradation of GI exclusively in the roots. Salt stress-induced calcium signals accelerate the cytoplasmic localization of COP1 in the root cells, which targets GI for 26S proteasomal degradation. Align with this, the interaction between COP1 and GI is only observed in the roots, not the shoots, under salt-stress conditions. Notably, the gi-201 cop1-4 double mutant shows an enhanced tolerance to salt stress similar to gi-201, indicating that GI is epistatic to COP1 under salt-stress conditions. Taken together, our study provides critical insights into the molecular mechanisms governing the COP1-mediated proteasomal degradation of GI for salt stress tolerance, raising new possibilities for developing salt-tolerant crops.

2.
Plant Signal Behav ; 18(1): 2287883, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38019725

RESUMO

Soybean, a vital protein-rich crop, offers bioactivity that can mitigate various chronic human diseases. Nonetheless, soybean breeding poses a challenge due to the negative correlation between enhanced protein levels and overall productivity. Our previous studies demonstrated that applying gaseous phytohormone, ethylene, to soybean leaves significantly boosts the accumulation of free amino acids, particularly asparagine (Asn). Current studies also revealed that ethylene application to soybeans significantly enhanced both essential and non-essential amino acid contents in leaves and stems. Asn plays a crucial role in ammonia detoxification and reducing fatigue. However, the molecular evidence supporting this phenomenon remains elusive. This study explores the molecular mechanisms behind enhanced Asn accumulation in ethylene-treated soybean leaves. Transcriptional analysis revealed that ethylene treatments to soybean leaves enhance the transcriptional levels of key genes involved in Asn biosynthesis, such as aspartate aminotransferase (AspAT) and Asn synthetase (ASN), which aligns with our previous observations of elevated Asn levels. These findings shed light on the role of ethylene in upregulating Asn biosynthetic genes, subsequently enhancing Asn concentrations. This molecular insight into amino acid metabolism regulation provides valuable knowledge for the metabolic farming of crops, especially in elevating nutraceutical ingredients with non-genetic modification (GM) approach for improved protein content.


Assuntos
Asparagina , Glycine max , Aminoácidos/metabolismo , Asparagina/genética , Asparagina/análise , Asparagina/metabolismo , Etilenos/metabolismo , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo
3.
Plant Physiol Biochem ; 200: 107804, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269823

RESUMO

The tomato (Solanum lycopersicum) is widely consumed globally and renowned for its health benefits, including the reduction of cardiovascular disease and prostate cancer risk. However, tomato production faces significant challenges, particularly due to various biotic stresses such as fungi, bacteria, and viruses. To address this challenges, we employed the CRISPR/Cas9 system to modify the tomato NUCLEOREDOXIN (SlNRX) genes (SlNRX1 and SlNRX2) belonging to the nucleocytoplasmic THIOREDOXIN subfamily. CRISPR/Cas9-mediated mutations in SlNRX1 (slnrx1) plants exhibited resistance against bacterial leaf pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326, as well as the fungal pathogen Alternaria brassicicola. However, the slnrx2 plants did not display resistance. Notably, the slnrx1 demonstrated elevated levels of endogenous salicylic acid (SA) and reduced levels of jasmonic acid after Psm infection, in comparison to both wild-type (WT) and slnrx2 plants. Furthermore, transcriptional analysis revealed that genes involved in SA biosynthesis, such as ISOCHORISMATE SYNTHASE 1 (SlICS1) and ENHANCED DISEASE SUSCEPTIBILITY 5 (SlEDS5), were upregulated in slnrx1 compared to WT plants. In addition, a key regulator of systemic acquired resistance, PATHOGENESIS-RELATED 1 (PR1), exhibited increased expression in slnrx1 compared to WT. These findings suggest that SlNRX1 acts as a negative regulator of plant immunity, facilitating infection by the Psm pathogen through interference with the phytohormone SA signaling pathway. Thus, targeted mutagenesis of SlNRX1 is a promising genetic means to enhance biotic stress resistance in crop breeding.


Assuntos
Ácido Salicílico , Solanum lycopersicum , Ácido Salicílico/metabolismo , Solanum lycopersicum/genética , Melhoramento Vegetal , Pseudomonas syringae/fisiologia , Transdução de Sinais/genética , Ciclopentanos/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
4.
Plant Commun ; 4(4): 100570, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36864727

RESUMO

Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Flores/genética , Temperatura , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Plant Cell ; 35(1): 298-317, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36135824

RESUMO

The precise timing of flowering in adverse environments is critical for plants to secure reproductive success. We report a mechanism in Arabidopsis (Arabidopsis thaliana) controlling the time of flowering by which the S-acylation-dependent nuclear import of the protein SALT OVERLY SENSITIVE3/CALCINEURIN B-LIKE4 (SOS3/CBL4), a Ca2+-signaling intermediary in the plant response to salinity, results in the selective stabilization of the flowering time regulator GIGANTEA inside the nucleus under salt stress, while degradation of GIGANTEA in the cytosol releases the protein kinase SOS2 to achieve salt tolerance. S-acylation of SOS3 was critical for its nuclear localization and the promotion of flowering, but partly dispensable for salt tolerance. SOS3 interacted with the photoperiodic flowering components GIGANTEA and FLAVIN-BINDING, KELCH REPEAT, F-BOX1 and participated in the transcriptional complex that regulates CONSTANS to sustain the transcription of CO and FLOWERING LOCUS T under salinity. Thus, the SOS3 protein acts as a Ca2+- and S-acylation-dependent versatile regulator that fine-tunes flowering time in a saline environment through the shared spatial separation and selective stabilization of GIGANTEA, thereby connecting two signaling networks to co-regulate the stress response and the time of flowering.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Estresse Salino , Regulação da Expressão Gênica de Plantas , Flores/metabolismo
6.
Front Plant Sci ; 13: 1007542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237515

RESUMO

Anthropogenic activities cause the leaching of heavy metals into groundwater and their accumulation in soil. Excess levels of heavy metals cause toxicity in plants, inducing the production of reactive oxygen species (ROS) and possible death caused by the resulting oxidative stress. Heavy metal stresses repress auxin biosynthesis and transport, inhibiting plant growth. Here, we investigated whether nickel (Ni) heavy metal toxicity is reduced by exogenous auxin application and whether Ni stress tolerance in Arabidopsis thaliana is mediated by the bifunctional enzyme YUCCA6 (YUC6), which functions as an auxin biosynthetic enzyme and a thiol-reductase (TR). We found that an application of up to 1 µM exogenous indole-3-acetic acid (IAA) reduces Ni stress toxicity. yuc6-1D, a dominant mutant of YUC6 with high auxin levels, was more tolerant of Ni stress than wild-type (WT) plants, despite absorbing significantly more Ni. Treatments of WT plants with YUCASIN, a specific inhibitor of YUC-mediated auxin biosynthesis, increased Ni toxicity; however yuc6-1D was not affected by YUCASIN and remained tolerant of Ni stress. This suggests that rather than the elevated IAA levels in yuc6-1D, the TR activity of YUC6 might be critical for Ni stress tolerance. The loss of TR activity in YUC6 caused by the point-mutation of Cys85 abolished the YUC6-mediated Ni stress tolerance. We also found that the Ni stress-induced ROS accumulation was inhibited in yuc6-1D plants, which consequently also showed reduced oxidative damage. An enzymatic assay and transcriptional analysis revealed that the peroxidase activity and transcription of PEROXIREDOXIN Q were enhanced by Ni stress to a greater level in yuc6-1D than in the WT. These findings imply that despite the need to maintain endogenous IAA levels for basal Ni stress tolerance, the TR activity of YUC6, not the elevated IAA levels, plays the predominant role inNi stress tolerance by lowering Ni-induced oxidative stress.

7.
Biochem Biophys Res Commun ; 635: 12-18, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36252332

RESUMO

Thioredoxins (TRXs) are small oxidoreductase proteins located in various subcellular compartments. Nucleoredoxin (NRX) is a nuclear-localized TRX and a key component for the integration of the antioxidant system with the immune response. Although NRX is well characterized in biotic stress responses, its functional role in abiotic stress responses is still elusive. To understand whether NRX contributes to heat stress response in tomato (Solanum lycopersicum), we generated CRISPR/Cas9-mediated mutations in SlNRX1 (slnrx1). Interestingly, the slnrx1 mutant was extremely sensitive to heat stress with higher electrolyte leakage, malondialdehyde contents, and H2O2 concentration compared to wild-type tomato plants, suggesting that SlNRX1 negatively regulates heat stress-induced oxidative damage. We also found that transcripts encoding antioxidant enzymes and Heat-Shock Proteins (HSPs) in slnrx1 were down-regulated either in the absence or presence of heat stress. These data suggest that NRX1 is a positive regulator for heat stress tolerance by elevating antioxidant capacity and inducing HSPs to protect cells against heat stress-induced oxidative damage and protein denaturation, respectively.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Antioxidantes/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrogênio/metabolismo , Resposta ao Choque Térmico/genética , Oxirredutases/metabolismo , Estresse Oxidativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Proc Natl Acad Sci U S A ; 119(33): e2207275119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939685

RESUMO

The circadian clock is a timekeeping, homeostatic system that temporally coordinates all major cellular processes. The function of the circadian clock is compensated in the face of variable environmental conditions ranging from normal to stress-inducing conditions. Salinity is a critical environmental factor affecting plant growth, and plants have evolved the SALT OVERLY SENSITIVE (SOS) pathway to acquire halotolerance. However, the regulatory systems for clock compensation under salinity are unclear. Here, we show that the plasma membrane Na+/H+ antiporter SOS1 specifically functions as a salt-specific circadian clock regulator via GIGANTEA (GI) in Arabidopsis thaliana. SOS1 directly interacts with GI in a salt-dependent manner and stabilizes this protein to sustain a proper clock period under salinity conditions. SOS1 function in circadian clock regulation requires the salt-mediated secondary messengers cytosolic free calcium and reactive oxygen species, pointing to a distinct regulatory role for SOS1 in addition to its function as a transporter to maintain Na+ homeostasis. Our results demonstrate that SOS1 maintains homeostasis of the salt response under high or daily fluctuating salt levels. These findings highlight the genetic capacity of the circadian clock to maintain timekeeping activity over a broad range of salinity levels.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ritmo Circadiano , Estresse Salino , Trocadores de Sódio-Hidrogênio , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estabilidade Proteica , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
9.
Front Plant Sci ; 13: 846294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283886

RESUMO

Light plays a crucial role in plant growth and development, and light signaling is integrated with various stress responses to adapt to different environmental changes. During this process, excessive protein synthesis overwhelms the protein-folding ability of the endoplasmic reticulum (ER), causing ER stress. Although crosstalk between light signaling and ER stress response has been reported in plants, the molecular mechanisms underlying this crosstalk are poorly understood. Here, we demonstrate that the photoreceptor phytochrome B (phyB) induces the expression of ER luminal protein chaperones as well as that of unfolded protein response (UPR) genes. The phyB-5 mutant was less sensitive to tunicamycin (TM)-induced ER stress than were the wild-type plants, whereas phyB-overexpressing plants displayed a more sensitive phenotype under white light conditions. ER stress response genes (BiP2 and BiP3), UPR-related bZIP transcription factors (bZIP17, bZIP28, and bZIP60), and programmed cell death (PCD)-associated genes (OXI1, NRP1, and MC8) were upregulated in phyB-overexpressing plants, but not in phyB-5, under ER stress conditions. The ER stress-sensitive phenotype of phyB-5 under red light conditions was eliminated with a reduction in photo-equilibrium by far-red light and darkness. The N-terminal domain of phyB is essential for signal transduction of the ER stress response in the nucleus, which is similar to light signaling. Taken together, our results suggest that phyB integrates light signaling with the UPR to relieve ER stress and maintain proper plant growth.

10.
Biochem Biophys Res Commun ; 586: 171-176, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856417

RESUMO

High temperature stress is an environmental factor that negatively affects the growth and development of crops. Hsp90 (90 kDa heat shock protein) is a major molecular chaperone in eukaryotic cells, contributing to the maintenance of cell homeostasis through interaction with co-chaperones. Aha1 (activator of Hsp90 ATPase) is well known as a co-chaperone that activates ATPase activity of Hsp90 in mammals. However, biochemical and physiological evidence relating to Aha has not yet been identified in plants. In this study, we investigated the heat-tolerance function of orchardgrass (Dactylis glomerata L.) Aha (DgAha). Recombinant DgAha interacted with cytosolic DgHsp90s and efficiently protected substrates from thermal denaturation. Furthermore, heterologous expression of DgAha in yeast (Saccharomyces cerevisiae) cells and Arabidopsis (Arabidopsis thaliana) plants conferred thermotolerance in vivo. Enhanced expression of DgAha in Arabidopsis stimulates the transcription of Hsp90 under heat stress. Our data demonstrate that plant Aha plays a positive role in heat stress tolerance via chaperone properties and/or activation of Hsp90 to protect substrate proteins in plants from thermal injury.


Assuntos
Proteínas de Arabidopsis/genética , Dactylis/genética , Proteínas de Choque Térmico HSP90/genética , ATPases Translocadoras de Prótons/genética , Termotolerância/genética , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Dactylis/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Choque Térmico HSP90/metabolismo , Temperatura Alta , Cinética , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico
11.
Front Pharmacol ; 13: 1076351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605393

RESUMO

Medicinal plants are the primary source of traditional healthcare systems in many rural areas mostly in developing countries. This study aimed to document and analyze the diversity, distribution, and sustainability of the traditional medicinal plants used by the Gurung people of the Sikles region in western Nepal. Ethnobotanical data were collected through focus group discussions and individual interviews, and analyzed using descriptive and inferential statistics. Prior informed consent was obtained before each interview. Quantitative ethnobotanical indices such as informant consensus factor, relative frequency of citation, and use values were also calculated. A possible association among these indices was tested using correlation analysis. A total of 115 wild medicinal plant species belonging to 106 genera and 71 families were documented. Asteraceae and Rosaceae were the dominant families whereas herbs were the most dominant life form. Roots were the most used plant part, paste was the most common method of preparation, and most of the medical formulations were taken orally. The highest number of medicinal plants were used to treat stomach disorders. The average informant consensus value of 0.79 indicates a high consensus among respondents in selecting medicinal plants. Lindera neesiana, Neopicrorhiza scrophulariiflora, Paris polyphylla, and Bergenia ciliata were found to be high-ranking medicinal plants based on the relative frequency of citation and use value. The genders did not affect medicinal plants' knowledge but age had a significant correlation. Most of the informants agreed that medicinal plants are under pressure due to overharvesting and a lack of proper forest management practices. The number of medicinal plants reported from the study area indicates that the Gurung people possess rich traditional knowledge, and the vegetation of the Sikles region constitutes rich diversity of medicinal plants.

12.
J Plant Biol ; 65(1): 21-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34602836

RESUMO

Viral diseases are extremely widespread infections that change constantly through mutations. To produce vaccines against viral diseases, transient expression systems are employed, and Nicotiana benthamiana (tobacco) plants are a rapidly expanding platform. In this study, we developed a recombinant protein vaccine targeting the major capsid protein (MCP) of iridovirus fused with the lysine motif (LysM) and coiled-coil domain of coronin 1 (ccCor1) for surface display using Lactococcus lactis. The protein was abundantly produced in N. benthamiana in its N-glycosylated form. Total soluble proteins isolated from infiltrated N. benthamiana leaves were treated sequentially with increasing ammonium sulfate solution, and recombinant MCP mainly precipitated at 40-60%. Additionally, affinity chromatography using Ni-NTA resin was applied for further purification. Native structure analysis using size exclusion chromatography showed that recombinant MCP existed in a large oligomeric form. A minimum OD600 value of 0.4 trichloroacetic acid (TCA)-treated L. lactis was required for efficient recombinant MCP display. Immunogenicity of recombinant MCP was assessed in a mouse model through enzyme-linked immunosorbent assay (ELISA) with serum-injected recombinant MCP-displaying L. lactis. In summary, we developed a plant-based recombinant vaccine production system combined with surface display on L. lactis.

13.
Plant Cell Environ ; 44(9): 3034-3048, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34129248

RESUMO

Abiotic stress, a serious threat to plants, occurs for extended periods in nature. Abscisic acid (ABA) plays a critical role in abiotic stress responses in plants. Therefore, stress responses mediated by ABA have been studied extensively, especially in short-term responses. However, long-term stress responses mediated by ABA remain largely unknown. To elucidate the mechanism by which plants respond to prolonged abiotic stress, we used long-term ABA treatment that activates the signalling against abiotic stress such as dehydration and investigated mechanisms underlying the responses. Long-term ABA treatment activates constitutive photomorphogenic 1 (COP1). Active COP1 mediates the ubiquitination of golden2-like1 (GLK1) for degradation, contributing to lowering expression of photosynthesis-associated genes such as glutamyl-tRNA reductase (HEMA1) and protochlorophyllide oxidoreductase A (PORA), resulting in the suppression of chloroplast development. Moreover, COP1 activation and GLK1 degradation upon long-term ABA treatment depend on light intensity. Additionally, plants with COP1 mutation or exposed to higher light intensity were more sensitive to salt stress. Collectively, our results demonstrate that long-term treatment of ABA leads to activation of COP1 in a light intensity-dependent manner for GLK1 degradation to suppress chloroplast development, which we propose to constitute a mechanism of balancing normal growth and stress responses upon the long-term abiotic stress.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiologia , Cloroplastos/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Dimerização , Relação Dose-Resposta à Radiação , Luz , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672673

RESUMO

In this study, the changes in free amino acids of soybean leaves after ethylene application were characterized based on quantitative and metabolomic analyses. All essential and nonessential amino acids in soybean leaves were enhanced by fivefold (250 to 1284 mg/100 g) and sixfold (544 to 3478 mg/100 g), respectively, via ethylene application. In particular, it was found that asparagine is the main component, comprising approximately 41% of the total amino acids with a twenty-five fold increase (78 to 1971 mg/100 g). Moreover, arginine and branched chain amino acids (Val, Leu, and Ile) increased by about 14 and 2-5 times, respectively. The increase in free amino acid in stem was also similar to the leaves. The metabolites in treated and untreated soybean leaves were systematically identified by gas chromatography-mass spectrometry (GC-MS), and partial variance discriminant analysis (PLS-DA) scores and heat map analysis were given to understand the changes of each metabolite. The application of ethylene may provide good nutrient potential for soybean leaves.


Assuntos
Aminoácidos/metabolismo , Etilenos/metabolismo , Glycine max/química , Aminoácidos/química , Análise Discriminante , Etilenos/química , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta/química , Folhas de Planta/metabolismo , Glycine max/metabolismo
15.
Molecules ; 26(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546346

RESUMO

Humic acid (HA) is a principal component of humic substances, which make up the complex organic matter that broadly exists in soil environments. HA promotes plant development as well as stress tolerance, however the precise molecular mechanism for these is little known. Here we conducted transcriptome analysis to elucidate the molecular mechanisms by which HA enhances salt stress tolerance. Gene Ontology Enrichment Analysis pointed to the involvement of diverse abiotic stress-related genes encoding HEAT-SHOCK PROTEINs and redox proteins, which were up-regulated by HA regardless of salt stress. Genes related to biotic stress and secondary metabolic process were mainly down-regulated by HA. In addition, HA up-regulated genes encoding transcription factors (TFs) involved in plant development as well as abiotic stress tolerance, and down-regulated TF genes involved in secondary metabolic processes. Our transcriptome information provided here provides molecular evidences and improves our understanding of how HA confers tolerance to salinity stress in plants.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Substâncias Húmicas , Estresse Salino/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transcriptoma/efeitos dos fármacos
16.
Sci Rep ; 10(1): 15042, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929162

RESUMO

Humic acid (HA) is composed of a complex supramolecular association and is produced by humification of organic matters in soil environments. HA not only improves soil fertility, but also stimulates plant growth. Although numerous bioactivities of HA have been reported, the molecular evidences have not yet been elucidated. Here, we performed transcriptomic analysis to identify the HA-prompted molecular mechanisms in Arabidopsis. Gene ontology enrichment analysis revealed that HA up-regulates diverse genes involved in the response to stress, especially to heat. Heat stress causes dramatic induction in unique gene families such as Heat-Shock Protein (HSP) coding genes including HSP101, HSP81.1, HSP26.5, HSP23.6, and HSP17.6A. HSPs mainly function as molecular chaperones to protect against thermal denaturation of substrates and facilitate refolding of denatured substrates. Interestingly, wild-type plants grown in HA were heat-tolerant compared to those grown in the absence of HA, whereas Arabidopsis HSP101 null mutant (hot1) was insensitive to HA. We also validated that HA accelerates the transcriptional expression of HSPs. Overall, these results suggest that HSP101 is a molecular target of HA promoting heat-stress tolerance in Arabidopsis. Our transcriptome information contributes to understanding the acquired genetic and agronomic traits by HA conferring tolerance to environmental stresses in plants.


Assuntos
Proteínas de Choque Térmico/genética , Substâncias Húmicas , Termotolerância , Ativação Transcricional , Arabidopsis , Proteínas de Choque Térmico/metabolismo , Transcriptoma
17.
Plant Physiol Biochem ; 156: 105-114, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32927152

RESUMO

Many stresses induce the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum, a phenomenon known as ER stress. In response to ER stress, cells initiate a protective response, known as unfolded protein response (UPR), to maintain cellular homeostasis. The UPR sensor, inositol-requiring enzyme 1 (IRE1), catalyzes the cytoplasmic splicing of bZIP transcription factor-encoding mRNAs to activate the UPR signaling pathway. Recently, we reported that pretreatment of Arabidopsis thaliana plants with tunicamycin, an ER stress inducer, increased their susceptibility to bacterial pathogens; on the other hand, IRE1 deficient mutants were susceptible to Pseudomonas syringae pv. maculicola (Psm) and failed to induce salicylic acid (SA)-mediated systemic acquired resistance. However, the functional relationship of IRE1 with the pathogen and TM treatment remains unknown. In the present study, we showed that bacterial pathogen-associated molecular patterns (PAMPs) induced IRE1 expression; however, PAMP-triggered immunity (PTI) response such as callose deposition, PR1 protein accumulation, or Pst DC3000 hrcC growth was not altered in ire1 mutants. We observed that IRE1 enhanced plant immunity against the bacterial pathogen P. syringae pv. tomato DC3000 (Pst DC3000) under ER stress. Moreover, TM-pretreated ire1 mutants were more susceptible to the avirulent strain Pst DC3000 (AvrRpt2) and showed greater cell death than wild-type plants during effector-triggered immunity (ETI). Additionally, Pst DC3000 (AvrRpt2)-mediated RIN4 degradation was reduced in ire1 mutants under TM-induced ER stress. Collectively, our results reveal that IRE1 plays a pivotal role in the immune signaling pathway to activate plant immunity against virulent and avirulent bacterial strains under ER stress.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/enzimologia , Estresse do Retículo Endoplasmático , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias , Inositol , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Pseudomonas syringae , Transdução de Sinais
18.
Plant Physiol ; 184(1): 443-458, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32690755

RESUMO

Drought is one of the most critical environmental stresses limiting plant growth and crop productivity. The synthesis and signaling of abscisic acid (ABA), a key phytohormone in the drought stress response, is under photoperiodic control. GIGANTEA (GI), a key regulator of photoperiod-dependent flowering and the circadian rhythm, is also involved in the signaling pathways for various abiotic stresses. In this study, we isolated ENHANCED EM LEVEL (EEL)/basic Leu zipper 12, a transcription factor involved in ABA signal responses, as a GI interactor in Arabidopsis (Arabidopsis thaliana). The diurnal expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), a rate-limiting ABA biosynthetic enzyme, was reduced in the eel, gi-1, and eel gi-1 mutants under normal growth conditions. Chromatin immunoprecipitation and electrophoretic mobility shift assays revealed that EEL and GI bind directly to the ABA-responsive element motif in the NCED3 promoter. Furthermore, the eel, gi-1, and eel gi-1 mutants were hypersensitive to drought stress due to uncontrolled water loss. The transcript of NCED3, endogenous ABA levels, and stomatal closure were all reduced in the eel, gi-1, and eel gi-1 mutants under drought stress. Our results suggest that the EEL-GI complex positively regulates diurnal ABA synthesis by affecting the expression of NCED3, and contributes to the drought tolerance of Arabidopsis.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Dioxigenases/genética , Dioxigenases/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica
19.
Sci Total Environ ; 725: 138409, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464747

RESUMO

Here, five aromatic monomers, one bearing a long alkyl chain [3-pentadecylphenol (3-PP)], the second bearing a polycyclic aromatic hydrocarbon [dihydroxynaphthalene (DHN)], the third bearing an organic amine [l-3,4-dihydroxyphenylalanine (l-DOPA)], the fourth bearing a carboxylic acid [vanillic acid (VA)], and the fifth bearing a phenol [catechol (CA)] were oxidatively coupled to produce four humic-like substances (3-PP, DHN, l-DOPA, and CAVA products) to mimic the diverse organic architectures of natural humus. Analysis using several methods, including SEM, EPR, elemental analysis, FT-IR-ATR, 13C NMR and anti-oxidant capability, revealed that each of the monomeric structures was well incorporated into the corresponding humic-like substances. Seed germination acceleration and NaCl-involved abiotic stress resistance of Arabidopsis thaliana were then tested to determine whether the different structures resulted in different levels of plant stimulation. The l-DOPA, CAVA and DHN-based materials showed enhanced stimulatory activities compared with no treatment, whereas the effects of the 3-PP-based materials were meager. Interestingly, high-resolution (15 T) ESI FT-ICR mass spectrometry-based van Krevelen diagrams clearly showed that the presence of molecules with H/C and O/C ratios ranging from 0.5 to 1.0 and 0.2 to 0.4, respectively, could be connected with such biological actions. Here, the l-DOPA sample showed the highest content of such molecules, followed by the CAVA, DHN and 3-PP samples. Next, the ability of l-DOPA and CAVA products to induce resistance in A. thaliana to a pathogen-related biotic stress was tested to confirm whether the proposed molecular features are associated with multi-stimulatory actions on plants. The expression level of pathogenesis-related protein 1 and inspection of plant morphology clearly revealed that both the l-DOPA and CAVA products stimulate plants to respond to biotic stresses. Size-exclusion chromatography together with NMR and IR data of both the materials strongly suggests that lignin-like supramolecular assemblages play an important role in versatile biological activities of humus.


Assuntos
Substâncias Húmicas/análise , Solo , Plantas , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
20.
Plant Physiol Biochem ; 147: 313-321, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31901883

RESUMO

Salt stress limits crop productivity worldwide, particularly in arid and heavily irrigated regions. Salt stress causes oxidative stress, in which plant cells accumulate harmful levels of reactive oxygen species (ROS). Thioredoxins (Trxs; EC 1.8.4.8) are antioxidant proteins encoded by a ubiquitous multigene family. Arabidopsis thaliana Trx h-type proteins localize in the cytoplasm and other subcellular organelles, and function in plant responses to abiotic stresses and pathogen attack. Here, we isolated the Arabidopsis genes encoding two cytosolic h-type Trx proteins, AtTrx-h2 and AtTrx-h3 and generated transgenic oilseed rape (Brassica napus) plants overexpressing AtTrx-h2 or AtTrx-h3. Heterologous expression of AtTrx-h2 in B. napus conferred salt tolerance with plants grown on 50 mM NaCl having higher fresh weight and chlorophyll contents compared with controls in hydroponic growth system. By contrast, expression of AtTrx-h3 or the empty vector control did not improve salt tolerance. In addition, AtTrx-h2-overexpressing transgenic plants exhibited lower levels of hydrogen peroxide and higher activities of antioxidant enzymes including peroxidase, catalase, and superoxide dismutase, compared with the plants expressing the empty vector control or AtTrx-h3. These results suggest that AtTrx-h2 is a promising candidate for engineering or breeding crops with enhanced salt stress tolerance.


Assuntos
Arabidopsis , Brassica napus , Regulação da Expressão Gênica de Plantas , Oxirredutases , Proteínas de Plantas , Tolerância ao Sal , Tiorredoxina h , Arabidopsis/enzimologia , Arabidopsis/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Tiorredoxina h/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA