Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1273342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869715

RESUMO

This study aims to explore the molecular regulatory mechanisms of acute exercise in the skeletal muscle of mice. Male C57BL/6 mice were randomly assigned to the control group, and the exercise group, which were sacrificed immediately after an acute bout of exercise. The study was conducted to investigate the metabolic and transcriptional profiling in the quadriceps muscles of mice. The results demonstrated the identification of 34 differentially expressed metabolites (DEMs), with 28 upregulated and 6 downregulated, between the two groups. Metabolic pathway analysis revealed that these DEMs were primarily enriched in several, including the citrate cycle, propanoate metabolism, and lysine degradation pathways. In addition, the results showed a total of 245 differentially expressed genes (DEGs), with 155 genes upregulated and 90 genes downregulated. KEGG analysis indicated that these DEGs were mainly enriched in various pathways such as ubiquitin mediated proteolysis and FoxO signaling pathway. Furthermore, the analysis revealed significant enrichment of DEMs and DEGs in signaling pathways such as protein digestion and absorption, ferroptosis signaling pathway. In summary, the identified multiple metabolic pathways and signaling pathways were involved in the exercise-induced physiological regulation of skeletal muscle, such as the TCA cycle, oxidative phosphorylation, protein digestion and absorption, the FoxO signaling pathway, ubiquitin mediated proteolysis, ferroptosis signaling pathway, and the upregulation of KLF-15, FoxO1, MAFbx, and MuRF1 expression could play a critical role in enhancing skeletal muscle proteolysis.

2.
Mol Ecol Resour ; 23(5): 1182-1193, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36912756

RESUMO

Ciliates are a large group of ubiquitous and highly diverse single-celled eukaryotes that play an essential role in the functioning of microbial food webs. However, their genomic diversity is far from clear due to the need to develop cultivation methods for most species, so most research is based on wild organisms that almost invariably contain contaminants. Here we establish an integrated Genome Decontamination Pipeline (iGDP) that combines homology search, telomere reads-assisted and clustering approaches to filter contaminated ciliate genome assemblies from wild specimens. We benchmarked the performance of iGDP using genomic data from a contaminated ciliate culture and the results showed that iGDP could recall 91.9% of the target sequences with 96.9% precision. We also used a synthetic dataset to offer guidelines for the application of iGDP in the removal of various groups of contaminants. Compared with several popular metagenome binning tools, iGDP could show better performance. To further validate the effectiveness of iGDP on real-world data, we applied it to decontaminate genome assemblies of three wild ciliate specimens and obtained their genomes with high quality comparable to that of previously well-studied model ciliate genomes. It is anticipated that the newly generated genomes and the established iGDP method will be valuable community resources for detailed studies on ciliate biodiversity, phylogeny, ecology and evolution. The pipeline (https://github.com/GWang2022/iGDP) can be implemented automatically to reduce manual filtering and classification and may be further developed to apply to other microeukaryotes.


Assuntos
Descontaminação , Genômica , Metagenoma , Filogenia , Eucariotos
3.
Sci Adv ; 9(8): eadd6550, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812318

RESUMO

The giant single-celled eukaryote, Spirostomum, exhibits one of the fastest movements in the biological world. This ultrafast contraction is dependent on Ca2+ rather than ATP and therefore differs to the actin-myosin system in muscle. We obtained the high-quality genome of Spirostomum minus from which we identified the key molecular components of its contractile apparatus, including two major Ca2+ binding proteins (Spasmin 1 and 2) and two giant proteins (GSBP1 and GSBP2), which act as the backbone and allow for the binding of hundreds of spasmins. The evidence suggests that the GSBP-spasmin protein complex is the functional unit of the mesh-like contractile fibrillar system, which, coupled with various other subcellular structures, provides the mechanism for repetitive ultrafast cell contraction and extension. These findings improve our understanding of the Ca2+-dependent ultrafast movement and provide a blueprint for future biomimicry, design, and construction of this kind of micromachine.


Assuntos
Actinas , Cilióforos , Miosinas , Contração Muscular/fisiologia
4.
Nutrients ; 14(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36145081

RESUMO

Methionine restriction and selenium supplementation are recommended because of their health benefits. As a major nutrient form in selenium supplementation, selenomethionine shares a similar biological process to its analog methionine. However, the outcome of selenomethionine supplementation under different methionine statuses and the interplay between these two nutrients remain unclear. Therefore, this study explored the metabolic effects and selenium utilization in HepG2 cells supplemented with selenomethionine under deprived, adequate, and abundant methionine supply conditions by using nuclear magnetic resonance-based metabolomic and molecular biological approaches. Results revealed that selenomethionine promoted the proliferation of HepG2 cells, the transcription of selenoproteins, and the production of most amino acids while decreasing the levels of creatine, aspartate, and nucleoside diphosphate sugar regardless of methionine supply. Selenomethionine substantially disturbed the tricarboxylic acid cycle and choline metabolism in cells under a methionine shortage. With increasing methionine supply, the metabolic disturbance was alleviated, except for changes in lactate, glycine, citrate, and hypoxanthine. The markable selenium accumulation and choline decrease in the cells under methionine shortage imply the potential risk of selenomethionine supplementation. This work revealed the biological effects of selenomethionine under different methionine supply conditions. This study may serve as a guide for controlling methionine and selenomethionine levels in dietary intake.


Assuntos
Selênio , Selenometionina , Aminoácidos , Ácido Aspártico , Colina , Citratos , Creatina , Suplementos Nutricionais , Glicina , Células Hep G2 , Humanos , Hipoxantinas , Lactatos , Metionina/metabolismo , Metionina/farmacologia , Açúcares de Nucleosídeo Difosfato , Racemetionina , Selênio/metabolismo , Selênio/farmacologia , Selenometionina/farmacologia , Selenoproteínas
5.
Comput Struct Biotechnol J ; 19: 1928-1932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897985

RESUMO

Ciliates contain two kinds of nuclei: the germline micronucleus (MIC) and the somatic macronucleus (MAC) in a single cell. The MAC usually have fragmented chromosomes. These fragmented chromosomes, capped with telomeres at both ends, could be gene size to several megabases in length among different ciliate species. So far, no telomere-to-telomere assembly of entire MAC genome in ciliate species has been finished. Development of the third generation sequencing technologies allows to generate sequencing reads up to megabases in length that could possibly span an entire MAC chromosome. Taking advantage of the ultra-long Nanopore reads, we established a simple strategy for the complete assembly of ciliate MAC genomes. Using this strategy, we assembled the complete MAC genomes of two ciliate species Tetrahymena thermophila and Tetrahymena shanghaiensis, composed of 181 and 214 chromosomes telomere-to-telomere respectively. The established strategy as well as the high-quality genome data will provide a useful approach for ciliate genome assembly, and a valuable community resource for further biological, evolutionary and population genomic studies.

6.
Microorganisms ; 9(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467569

RESUMO

In the giant ciliate Stentor coeruleus, oral apparatus (OA) regeneration is an experimentally tractable regeneration paradigm that occurs via a series of morphological steps. OA regeneration is thought to be driven by a complex regulatory system that orchestrates the temporal expression of conserved and specific genes. We previously identified a S. coeruleus-specific gene (named SCSG1) that was significantly upregulated during the ciliogenesis stages of OA regeneration, with an expression peak at the stage of the first OA cilia appearance. We established a novel RNA interference (RNAi) method through cyanobacteria Synechocystis sp. PCC6803 feeding in S. coeruleus. The expression of SCSG1 gene was significantly knocked down by using this method and induced abnormal ciliogenesis of OA regeneration in S. coeruleus, suggesting that SCSG1 is essential for OA regeneration in S. coeruleus. This novel RNAi method by cyanobacterial feeding has potential utility for studying other ciliates.

7.
Zhongguo Zhong Yao Za Zhi ; 44(12): 2580-2587, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31359727

RESUMO

Panax japonicus is a traditional Chinese medicine,and its principle components have shown certain pharmacological activities for cell damage,aging and cell apoptosis. In order to clarify the pharmacological mechanism and involved metabolic pathways of P. japonicas,the gene expression of Tetrahymena thermophila under P. japonicus treatment was analyzed through high-throughput transcriptome sequencing in this study. Based on the transcriptome analysis,3 544 differentially expressed genes were identified in control group,of which 1 945 genes showed up-regulated expression and 1 599 genes showed down-regulated expression. Under P. japonicas treatment in the experiment group,3 312 differentially expressed genes were screened,of which 1 `493 genes showed up-regulated expression and 1 819 genes showed down-regulated expression. GO enrichment analysis indicated that in control group,the genes in the cells in a series of fundamental biological process were down-regulated,such as DNA replication and protein synthesis; while the signal transduction process and fatty acids oxidizing process were enriched. Whereas in the experiment group,down-regulated genes were mainly enriched in oxidation-reduction,cofactor metabolic process and vitamin metabolic process; up-regulated genes were enriched in signal transduction process and protein modification process. In the analysis using KEGG database,cell cycle pathway was enhanced and autophagy pathway was inhibited under the condition of P. japonicas treatment. Real-time quantitative polymerase chain reaction( RT-qPCR) was used to detect the expression differences between 6 up-regulated and 4 down-regulated genes in related metabolic pathways. The RT-q PCR results and RNA-Seq data were highly correlated and consistent with each other. This study could provide important direction and basis for further study on the mechanism of cell growth regulation with the treatment of P. japonica.


Assuntos
Panax/química , Plantas Medicinais/química , Tetrahymena thermophila/efeitos dos fármacos , Tetrahymena thermophila/genética , Transcriptoma , Expressão Gênica , Perfilação da Expressão Gênica , Redes e Vias Metabólicas
8.
PLoS Biol ; 17(6): e3000294, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31158217

RESUMO

A morphospecies is defined as a taxonomic species based wholly on morphology, but often morphospecies consist of clusters of cryptic species that can be identified genetically or molecularly. The nature of the evolutionary novelty that accompanies speciation in a morphospecies is an intriguing question. Morphospecies are particularly common among ciliates, a group of unicellular eukaryotes that separates 2 kinds of nuclei-the silenced germline nucleus (micronucleus [MIC]) and the actively expressed somatic nucleus (macronucleus [MAC])-within a common cytoplasm. Because of their very similar morphologies, members of the Tetrahymena genus are considered a morphospecies. We explored the hidden genomic evolution within this genus by performing a comprehensive comparative analysis of the somatic genomes of 10 species and the germline genomes of 2 species of Tetrahymena. These species show high genetic divergence; phylogenomic analysis suggests that the genus originated about 300 million years ago (Mya). Seven universal protein domains are preferentially included among the species-specific (i.e., the youngest) Tetrahymena genes. In particular, leucine-rich repeat (LRR) genes make the largest contribution to the high level of genome divergence of the 10 species. LRR genes can be sorted into 3 different age groups. Parallel evolutionary trajectories have independently occurred among LRR genes in the different Tetrahymena species. Thousands of young LRR genes contain tandem arrays of exactly 90-bp exons. The introns separating these exons show a unique, extreme phase 2 bias, suggesting a clonal origin and successive expansions of 90-bp-exon LRR genes. Identifying LRR gene age groups allowed us to document a Tetrahymena intron length cycle. The youngest 90-bp exon LRR genes in T. thermophila are concentrated in pericentromeric and subtelomeric regions of the 5 micronuclear chromosomes, suggesting that these regions act as genome innovation centers. Copies of a Tetrahymena Long interspersed element (LINE)-like retrotransposon are very frequently found physically adjacent to 90-bp exon/intron repeat units of the youngest LRR genes. We propose that Tetrahymena species have used a massive exon-shuffling mechanism, involving unequal crossing over possibly in concert with retrotransposition, to create the unique 90-bp exon array LRR genes.


Assuntos
Genômica/métodos , Especificidade da Espécie , Tetrahymena/genética , Evolução Biológica , Evolução Molecular , Éxons , Genoma de Protozoário , Íntrons , Proteínas de Repetições Ricas em Leucina , Filogenia , Proteínas/genética , Tetrahymena/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA