Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 20617, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232086

RESUMO

The effectiveness of ultrasonography (USG) in liver cancer screening is partly constrained by the operator's expertise. We aimed to develop and evaluate an AI-assisted system for detecting and classifying focal liver lesions (FLLs) from USG images. This retrospective study incorporated 26,288 USG images from 5444 patients to train YOLOv5 model for FLLs detection and classification of seven different types of FLLs, including hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), focal fatty infiltration, focal fatty sparing (FFS), cyst, hemangioma, and regenerative nodules. AI model performance was assessed for detection and diagnosis of the FLLs on a per-image and per-lesion basis. The AI achieved an overall FLLs detection rate of 84.8% (95%CI:83.3-86.4), with consistent performance for FLLs ≤ 1 cm and > 1 cm. It also exhibited sensitivity and specificity for distinguishing malignant FLLs from other benign FLLs at 97.0% (95%CI:95. 9-98.2) and 97.0% (95%CI:95.9-98.1), respectively. Among specific FLL types, CCA detection rate was at 92.2% (95%CI:88.0-96.4), followed by FFS at 89.7% (95%CI:87.1-92.3), and HCC at 82.3% (95%CI:77.1-87.5). The specificities and NPVs for regenerative nodules were 100% and 99.9% (95%CI:99.8-100.0), respectively. Our AI model can potentially assist physicians in FLLs detection and diagnosis during USG examinations. Further external validation is needed for clinical application.


Assuntos
Inteligência Artificial , Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Ultrassonografia , Humanos , Colangiocarcinoma/diagnóstico por imagem , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/patologia , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico , Ultrassonografia/métodos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/patologia , Idoso , Adulto , Sensibilidade e Especificidade
2.
Eur J Radiol ; 165: 110932, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37390663

RESUMO

PURPOSE: Detection of hepatocellular carcinoma (HCC) is crucial during surveillance by ultrasound. We previously developed an artificial intelligence (AI) system based on convolutional neural network for detection of focal liver lesions (FLLs) in ultrasound. The primary aim of this study was to evaluate whether the AI system can assist non-expert operators to detect FLLs in real-time, during ultrasound examinations. METHOD: This single-center prospective randomized controlled study evaluated the AI system in assisting non-expert and expert operators. Patients with and without FLLs were enrolled and had ultrasound performed twice, with and without AI assistance. McNemar's test was used to compare paired FLL detection rates and false positives between groups with and without AI assistance. RESULTS: 260 patients with 271 FLLs and 244 patients with 240 FLLs were enrolled into the groups of non-expert and expert operators, respectively. In non-experts, FLL detection rate in the AI assistance group was significantly higher than the no AI assistance group (36.9 % vs 21.4 %, p < 0.001). In experts, FLL detection rates were not significantly different between the groups with and without AI assistance (66.7 % vs 63.3 %, p = 0.32). False positive detection rates in the groups with and without AI assistance were not significantly different in both non-experts (14.2 % vs 9.2 %, p = 0.08) and experts (8.6 % vs 9.0 %, p = 0.85). CONCLUSIONS: The AI system resulted in significant increase in detection of FLLs during ultrasound examinations by non-experts. Our findings may support future use of the AI system in resource-limited settings where ultrasound examinations are performed by non-experts. The study protocol was registered under the Thai Clinical Trial Registry (TCTR20201230003), which is part of the WHO ICTRP Registry Network. The registry can be accessed via the following URL: https://trialsearch.who.int/Trial2.aspx?TrialID=TCTR20201230003.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Inteligência Artificial , Estudos Prospectivos , Meios de Contraste
3.
Sci Rep ; 12(1): 7749, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545628

RESUMO

Despite the wide availability of ultrasound machines for hepatocellular carcinoma surveillance, an inadequate number of expert radiologists performing ultrasounds in remote areas remains a primary barrier for surveillance. We demonstrated feasibility of artificial intelligence (AI) to aid in the detection of focal liver lesions (FLLs) during ultrasound. An AI system for FLL detection in ultrasound videos was developed. Data in this study were prospectively collected at a university hospital. We applied a two-step training strategy for developing the AI system by using a large collection of ultrasound snapshot images and frames from full-length ultrasound videos. Detection performance of the AI system was evaluated and then compared to detection performance by 25 physicians including 16 non-radiologist physicians and 9 radiologists. Our dataset contained 446 videos (273 videos with 387 FLLs and 173 videos without FLLs) from 334 patients. The videos yielded 172,035 frames with FLLs and 1,427,595 frames without FLLs for training on the AI system. The AI system achieved an overall detection rate of 89.8% (95%CI: 84.5-95.0) which was significantly higher than that achieved by non-radiologist physicians (29.1%, 95%CI: 21.2-37.0, p < 0.001) and radiologists (70.9%, 95%CI: 63.0-78.8, p < 0.001). Median false positive detection rate by the AI system was 0.7% (IQR: 1.3%). AI system operation speed reached 30-34 frames per second, showing real-time feasibility. A further study to demonstrate whether the AI system can assist operators during ultrasound examinations is warranted.


Assuntos
Inteligência Artificial , Neoplasias Hepáticas , Estudos de Viabilidade , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Radiologistas , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA