Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Sci Rep ; 13(1): 22412, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104152

RESUMO

In silico interrogation of glioblastoma (GBM) in The Cancer Genome Atlas (TCGA) revealed upregulation of GNA12 (Gα12), encoding the alpha subunit of the heterotrimeric G-protein G12, concomitant with overexpression of multiple G-protein coupled receptors (GPCRs) that signal through Gα12. Glioma stem cell lines from patient-derived xenografts also showed elevated levels of Gα12. Knockdown (KD) of Gα12 was carried out in two different human GBM stem cell (GSC) lines. Tumors generated in vivo by orthotopic injection of Gα12KD GSC cells showed reduced invasiveness, without apparent changes in tumor size or survival relative to control GSC tumor-bearing mice. Transcriptional profiling of GSC-23 cell tumors revealed significant differences between WT and Gα12KD tumors including reduced expression of genes associated with the extracellular matrix, as well as decreased expression of stem cell genes and increased expression of several proneural genes. Thrombospondin-1 (THBS1), one of the genes most repressed by Gα12 knockdown, was shown to be required for Gα12-mediated cell migration in vitro and for in vivo tumor invasion. Chemogenetic activation of GSC-23 cells harboring a Gα12-coupled DREADD also increased THBS1 expression and in vitro invasion. Collectively, our findings implicate Gα12 signaling in regulation of transcriptional reprogramming that promotes invasiveness, highlighting this as a potential signaling node for therapeutic intervention.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Transdução de Sinais , Processos Neoplásicos , Regulação para Cima , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proliferação de Células
2.
Toxins (Basel) ; 15(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36828423

RESUMO

Brown spider envenomation results in dermonecrosis, characterized by an intense inflammatory reaction. The principal toxins of brown spider venoms are phospholipase-D isoforms, which interact with different cellular membrane components, degrade phospholipids, and generate bioactive mediators leading to harmful effects. The Loxosceles intermedia phospholipase D, LiRecDT1, possesses a loop that modulates the accessibility to the active site and plays a crucial role in substrate. In vitro and in silico analyses were performed to determine aspects of this enzyme's substrate preference. Sphingomyelin d18:1/6:0 was the preferred substrate of LiRecDT1 compared to other Sphingomyelins. Lysophosphatidylcholine 16:0/0:0 was preferred among other lysophosphatidylcholines, but much less than Sphingomyelin d18:1/6:0. In contrast, phosphatidylcholine d18:1/16:0 was not cleaved. Thus, the number of carbon atoms in the substrate plays a vital role in determining the optimal activity of this phospholipase-D. The presence of an amide group at C2 plays a key role in recognition and activity. In silico analyses indicated that a subsite containing the aromatic residues Y228 and W230 appears essential for choline recognition by cation-π interactions. These findings may help to explain why different cells, with different phospholipid fatty acid compositions exhibit distinct susceptibilities to brown spider venoms.


Assuntos
Fosfolipase D , Venenos de Aranha , Aranhas , Animais , Esfingomielinas/metabolismo , Diester Fosfórico Hidrolases/química , Fosfolipase D/metabolismo , Venenos de Aranha/química , Fosfolipídeos/metabolismo , Lisofosfatidilcolinas , Aranhas/metabolismo
3.
Toxins (Basel) ; 11(6)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248109

RESUMO

Brown spider envenomation results in dermonecrosis with gravitational spreading characterized by a marked inflammatory reaction and with lower prevalence of systemic manifestations such as renal failure and hematological disturbances. Several toxins make up the venom of these species, and they are mainly peptides and proteins ranging from 5-40 kDa. The venoms have three major families of toxins: phospholipases-D, astacin-like metalloproteases, and the inhibitor cystine knot (ICK) peptides. Serine proteases, serpins, hyaluronidases, venom allergens, and a translationally controlled tumor protein (TCTP) are also present. Toxins hold essential biological properties that enable interactions with a range of distinct molecular targets. Therefore, the application of toxins as research tools and clinical products motivates repurposing their uses of interest. This review aims to discuss possibilities for brown spider venom toxins as putative models for designing molecules likely for therapeutics based on the status quo of brown spider venoms. Herein, we explore new possibilities for the venom components in the context of their biochemical and biological features, likewise their cellular targets, three-dimensional structures, and mechanisms of action.


Assuntos
Diester Fosfórico Hidrolases , Venenos de Aranha , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Humanos , Imunoterapia , Inseticidas/farmacologia , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/farmacologia , Proteínas Recombinantes/farmacologia , Inibidores de Serina Proteinase/farmacologia , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Proteína Tumoral 1 Controlada por Tradução
4.
Oncogene ; 37(41): 5492-5507, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29887596

RESUMO

The role of YAP (Yes-associated protein 1) and MRTF-A (myocardin-related transcription factor A), two transcriptional co-activators regulated downstream of GPCRs (G protein-coupled receptors) and RhoA, in the growth of glioblastoma cells and in vivo glioblastoma multiforme (GBM) tumor development was explored using human glioblastoma cell lines and tumor-initiating cells derived from patient-derived xenografts (PDX). Knockdown of these co-activators in GSC-23 PDX cells using short hairpin RNA significantly attenuated in vitro self-renewal capability assessed by limiting dilution, oncogene expression, and neurosphere formation. Orthotopic xenografts of the MRTF-A and YAP knockdown PDX cells formed significantly smaller tumors and were of lower morbidity than wild-type cells. In vitro studies used PDX and 1321N1 glioblastoma cells to examine functional responses to sphingosine 1-phosphate (S1P), a GPCR agonist that activates RhoA signaling, demonstrated that YAP signaling was required for cell migration and invasion, whereas MRTF-A was required for cell adhesion; both YAP and MRTF-A were required for proliferation. Gene expression analysis by RNA-sequencing of S1P-treated MRTF-A or YAP knockout cells identified 44 genes that were induced through RhoA and highly dependent on YAP, MRTF-A, or both. Knockdown of F3 (tissue factor (TF)), a target gene regulated selectively through YAP, blocked cell invasion and migration, whereas knockdown of HBEGF (heparin-binding epidermal growth factor-like growth factor), a gene selectively induced through MRTF-A, prevented cell adhesion in response to S1P. Proliferation was sensitive to knockdown of target genes regulated through either or both YAP and MRTF-A. Expression of TF and HBEGF was also selectively decreased in tumors from PDX cells lacking YAP or MRTF-A, indicating that these transcriptional pathways are regulated in preclinical GBM models and suggesting that their activation through GPCRs and RhoA contributes to growth and maintenance of human GBM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Fosfoproteínas/genética , Transativadores/genética , Animais , Neoplasias Encefálicas/genética , Glioblastoma/genética , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Fatores de Transcrição , Proteínas de Sinalização YAP , Proteína rhoA de Ligação ao GTP/biossíntese , Proteína rhoA de Ligação ao GTP/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-28194160

RESUMO

Brown spiders are venomous arthropods that use their venom for predation and defense. In humans, bites of these animals provoke injuries including dermonecrosis with gravitational spread of lesions, hematological abnormalities and impaired renal function. The signs and symptoms observed following a brown spider bite are called loxoscelism. Brown spider venom is a complex mixture of toxins enriched in low molecular mass proteins (4-40 kDa). Characterization of the venom confirmed the presence of three highly expressed protein classes: phospholipases D, metalloproteases (astacins) and insecticidal peptides (knottins). Recently, toxins with low levels of expression have also been found in Loxosceles venom, such as serine proteases, protease inhibitors (serpins), hyaluronidases, allergen-like toxins and histamine-releasing factors. The toxin belonging to the phospholipase-D family (also known as the dermonecrotic toxin) is the most studied class of brown spider toxins. This class of toxins single-handedly can induce inflammatory response, dermonecrosis, hemolysis, thrombocytopenia and renal failure. The functional role of the hyaluronidase toxin as a spreading factor in loxoscelism has also been demonstrated. However, the biological characterization of other toxins remains unclear and the mechanism by which Loxosceles toxins exert their noxious effects is yet to be fully elucidated. The aim of this review is to provide an insight into brown spider venom toxins and toxicology, including a description of historical data already available in the literature. In this review article, the identification processes of novel Loxosceles toxins by molecular biology and proteomic approaches, their biological characterization and structural description based on x-ray crystallography and putative biotechnological uses are described along with the future perspectives in this field.

6.
J Cell Biochem ; 118(4): 726-738, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27563734

RESUMO

Loxoscelism refers to the clinical symptoms that develop after brown spider bites. Brown spider venoms contain several phospholipase-D isoforms, which are the main toxins responsible for both the cutaneous and systemic effects of loxoscelism. Understanding of the phospholipase-D catalytic mechanism is crucial for the development of specific treatment that could reverse the toxic effects caused by the spider bite. Based on enzymatic, biological, structural, and thermodynamic tests, we show some features suitable for designing drugs against loxoscelism. Firstly, through molecular docking and molecular dynamics predictions, we found three different molecules (Suramin, Vu0155056, and Vu0359595) that were able to bind the enzyme's catalytic site and interact with catalytically important residues (His12 or His47) and with the Mg2+ co-factor. The binding promoted a decrease in the recombinant brown spider venom phospholipase-D (LiRecDT1) enzymatic activity. Furthermore, the presence of the inhibitors reduced the hemolytic, dermonecrotic, and inflammatory activities of the venom toxin in biological assays. Altogether, these results indicate the mode of action of three different LiRecDT1 inhibitors, which were able to prevent the venom toxic effects. This strengthen the idea of the importance of designing a specific drug to treat the serious clinical symptoms caused by the brown spider bite, a public health problem in several parts of the world, and until now without specific treatment. J. Cell. Biochem. 118: 726-738, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Artrópodes/antagonistas & inibidores , Aranha Marrom Reclusa/enzimologia , Desenho de Fármacos , Fosfolipase D/antagonistas & inibidores , Venenos de Aranha/antagonistas & inibidores , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Benzimidazóis/farmacologia , Aranha Marrom Reclusa/genética , Aranha Marrom Reclusa/patogenicidade , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Necrose , Fosfolipase D/química , Fosfolipase D/genética , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Piperidinas/farmacologia , Coelhos , Proteínas Recombinantes/genética , Pele/efeitos dos fármacos , Pele/patologia , Picada de Aranha/tratamento farmacológico , Picada de Aranha/enzimologia , Venenos de Aranha/química , Venenos de Aranha/genética , Suramina/farmacologia
7.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;232017.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484692

RESUMO

Abstract Brown spiders are venomous arthropods that use their venom for predation and defense. In humans, bites of these animals provoke injuries including dermonecrosis with gravitational spread of lesions, hematological abnormalities and impaired renal function. The signs and symptoms observed following a brown spider bite are called loxoscelism. Brown spider venom is a complex mixture of toxins enriched in low molecular mass proteins (440 kDa). Characterization of the venom confirmed the presence of three highly expressed protein classes: phospholipases D, metalloproteases (astacins) and insecticidal peptides (knottins). Recently, toxins with low levels of expression have also been found in Loxosceles venom, such as serine proteases, protease inhibitors (serpins), hyaluronidases, allergen-like toxins and histamine-releasing factors. The toxin belonging to the phospholipase-D family (also known as the dermonecrotic toxin) is the most studied class of brown spider toxins. This class of toxins single-handedly can induce inflammatory response, dermonecrosis, hemolysis, thrombocytopenia and renal failure. The functional role of the hyaluronidase toxin as a spreading factor in loxoscelism has also been demonstrated. However, the biological characterization of other toxins remains unclear and the mechanism by which Loxosceles toxins exert their noxious effects is yet to be fully elucidated. The aim of this review is to provide an insight into brown spider venom toxins and toxicology, including a description of historical data already available in the literature. In this review article, the identification processes of novel Loxosceles toxins by molecular biology and proteomic approaches, their biological characterization and structural description based on x-ray crystallography and putative biotechnological uses are described along with the future perspectives in this field.

8.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;23: 6, 2017. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954813

RESUMO

Abstract Brown spiders are venomous arthropods that use their venom for predation and defense. In humans, bites of these animals provoke injuries including dermonecrosis with gravitational spread of lesions, hematological abnormalities and impaired renal function. The signs and symptoms observed following a brown spider bite are called loxoscelism. Brown spider venom is a complex mixture of toxins enriched in low molecular mass proteins (4-40 kDa). Characterization of the venom confirmed the presence of three highly expressed protein classes: phospholipases D, metalloproteases (astacins) and insecticidal peptides (knottins). Recently, toxins with low levels of expression have also been found in Loxosceles venom, such as serine proteases, protease inhibitors (serpins), hyaluronidases, allergen-like toxins and histamine-releasing factors. The toxin belonging to the phospholipase-D family (also known as the dermonecrotic toxin) is the most studied class of brown spider toxins. This class of toxins single-handedly can induce inflammatory response, dermonecrosis, hemolysis, thrombocytopenia and renal failure. The functional role of the hyaluronidase toxin as a spreading factor in loxoscelism has also been demonstrated. However, the biological characterization of other toxins remains unclear and the mechanism by which Loxosceles toxins exert their noxious effects is yet to be fully elucidated. The aim of this review is to provide an insight into brown spider venom toxins and toxicology, including a description of historical data already available in the literature. In this review article, the identification processes of novel Loxosceles toxins by molecular biology and proteomic approaches, their biological characterization and structural description based on x-ray crystallography and putative biotechnological uses are described along with the future perspectives in this field.(AU)


Assuntos
Animais , Venenos de Aranha , Aranhas , Toxicologia , Metaloproteases , Serina Proteases
9.
J Mol Model ; 22(9): 196, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27488102

RESUMO

Inhibitor cystine knots (ICKs) are a family of structural peptides with a large number of cysteine residues that form intramolecular disulfide bonds, resulting in a knot. These peptides are involved in a variety of biological functions including predation and defense, and are found in various species, such as spiders, scorpions, sea anemones, and plants. The Loxosceles intermedia venom gland transcriptome identified five groups of ICK peptides that represent more than 50 % of toxin-coding transcripts. Here, we describe the molecular cloning of U2-Sicaritoxin-Lit2 (U2-SCRTX-Lit2), bioinformatic characterization, structure prediction, and molecular dynamic analysis. The sequence of U2-SCRTX-Lit2 obtained from the transcriptome is similar to that of µ-Hexatoxin-Mg2, a peptide that inhibits the insect Nav channel. Bioinformatic analysis of sequences classified as ICK family members also showed a conservation of cysteine residues among ICKs from different spiders, with the three dimensional molecular model of U2-SCRTX-Lit2 similar in structure to the hexatoxin from µ-hexatoxin-Mg2a. Molecular docking experiments showed the interaction of U2-SCRTX-Lit2 to its predictable target-the Spodoptera litura voltage-gated sodium channel (SlNaVSC). After 200 ns of molecular dynamic simulation, the final structure of the complex showed stability in agreement with the experimental data. The above analysis corroborates the existence of a peptide toxin with insecticidal activity from a novel ICK family in L. intermedia venom and demonstrates that this peptide targets Nav channels.


Assuntos
Miniproteínas Nó de Cistina/química , Modelos Moleculares , Venenos de Aranha/química , Aranhas/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína
10.
Toxicon ; 108: 154-66, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26474948

RESUMO

Loxosceles spiders are responsible for serious human envenomations worldwide. The collection of symptoms found in victims after accidents is called loxoscelism and is characterized by two clinical conditions: cutaneous loxoscelism and systemic loxocelism. The only specific treatment is serum therapy, in which an antiserum produced with Loxosceles venom is administered to the victims after spider accidents. Our aim was to improve our knowledge, regarding the immunological relationship among toxins from the most epidemiologic important species in Brazil (Loxosceles intermedia, Loxosceles gaucho and Loxosceles laeta). Immunoassays using spider venoms and L. intermedia recombinant toxins were performed and their cross-reactivity assessed. The biological conservation of the main Loxosceles toxins (Phospholipases-D, Astacin-like metalloproteases, Hyaluronidase, ICK-insecticide peptide and TCTP-histamine releasing factor) were investigated. An in silico analysis of the putative epitopes was performed and is discussed on the basis of the experimental results. Our data is an immunological investigation in light of biological conservation throughout the Loxosceles genus. The results bring out new insights on brown spider venom toxins for study, diagnosis and treatment of loxoscelism and putative biotechnological applications concerning immune conserved features in the toxins.


Assuntos
Antivenenos/imunologia , Venenos de Aranha/imunologia , Aranhas , Animais , Proteínas de Artrópodes/química , Biologia Computacional , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Venenos de Aranha/química , Venenos de Aranha/enzimologia , Proteína Tumoral 1 Controlada por Tradução
11.
Toxicon ; 83: 91-120, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24631373

RESUMO

The Loxosceles genus spiders (the brown spiders) are encountered in all the continents, and the clinical manifestations following spider bites include skin necrosis with gravitational lesion spreading and occasional systemic manifestations, such as intravascular hemolysis, thrombocytopenia and acute renal failure. Brown spider venoms are complex mixtures of toxins especially enriched in three molecular families: the phospholipases D, astacin-like metalloproteases and Inhibitor Cystine Knot (ICK) peptides. Other toxins with low level of expression also present in the venom include the serine proteases, serine protease inhibitors, hyaluronidases, allergen factors and translationally controlled tumor protein (TCTP). The mechanisms by which the Loxosceles venoms act and exert their noxious effects are not fully understood. Except for the brown spider venom phospholipase D, which causes dermonecrosis, hemolysis, thrombocytopenia and renal failure, the pathological activities of the other venom toxins remain unclear. The objective of the present review is to provide insights into the brown spider venoms and loxoscelism based on recent results. These insights include the biology of brown spiders, the clinical features of loxoscelism and the diagnosis and therapy of brown spider bites. Regarding the brown spider venom, this review includes a description of the novel toxins revealed by molecular biology and proteomics techniques, the data regarding three-dimensional toxin structures, and the mechanism of action of these molecules. Finally, the biotechnological applications of the venom components, especially for those toxins reported as recombinant molecules, and the challenges for future study are discussed.


Assuntos
Venenos de Aranha/toxicidade , Aranhas/química , Animais , Antivenenos/química , Proteínas de Artrópodes/química , Proteínas de Artrópodes/isolamento & purificação , Proteínas de Artrópodes/toxicidade , Biomarcadores Tumorais/química , Biomarcadores Tumorais/isolamento & purificação , Feminino , Humanos , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/isolamento & purificação , Hialuronoglucosaminidase/toxicidade , Masculino , Modelos Moleculares , Fosfolipase D/química , Fosfolipase D/isolamento & purificação , Fosfolipase D/toxicidade , Proteômica , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/toxicidade , Picada de Aranha/patologia , Venenos de Aranha/química , Venenos de Aranha/imunologia , Aranhas/anatomia & histologia , Aranhas/fisiologia , Proteína Tumoral 1 Controlada por Tradução
12.
Toxicon ; 76: 11-22, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24018360

RESUMO

Loxosceles bites have been associated with characteristic dermonecrotic lesions with gravitational spreading and systemic manifestations. Venom primarily comprises peptides and protein molecules (5-40 kDa) with multiple biological activities. Although poorly studied, metalloproteases have been identified in venoms of several Loxosceles species, presenting proteolytic effects on extracellular matrix components. The characterization of an Astacin-like protease (LALP) in Loxosceles intermedia venom was the first report of an Astacin family member as a component of animal venom. Recently, these proteases were described as a gene family in L. intermedia, Loxosceles laeta and Loxosceles gaucho. Herein, the whole venom complexity of these three Loxosceles species was analyzed using two-dimensional electrophoresis (2DE). Subproteomes of LALPs were explored through 2DE immunostaining using anti-LALP1 antibodies and 2DE gelatin zymogram. Proteins presented molecular masses ranging from 24 to 29 kDa and the majority of these molecules had basic or neutral isoelectric points (6.89-9.93). Likewise, the measurement of gelatinolytic effects of Loxosceles venom using fluorescein-gelatin showed that the three venoms have distinct proteolytic activities. The metalloprotease fibrinogenolytic activities were also evaluated. All venoms showed fibrinogenolytic activity with different proteolytic effects on Aα and Bß chains of fibrinogen. The results reported herein suggest that the LALP family is larger than indicated in previously published data and that the complex profile of the gelatinolytic activity reflects their relevance in loxoscelism. Furthermore, our investigation implicates the brown spider venom as a source of Astacin-like proteases for use in loxoscelism studies, cell biology research and biotechnological applications.


Assuntos
Metaloproteases/metabolismo , Venenos de Aranha/enzimologia , Aranhas/enzimologia , Animais , Eletroforese em Gel Bidimensional , Feminino , Masculino , Metaloproteases/química , Proteoma , Especificidade da Espécie
13.
Toxicon ; 71: 147-58, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23751278

RESUMO

The venom of a Loxosceles spider is composed of a complex mixture of biologically active components, consisting predominantly of low molecular mass molecules (3-45 kDa). Transcriptome analysis of the Loxosceles intermedia venom gland revealed ESTs with similarity to the previously described LiTx peptides. Sequences similar to the LiTx3 isoform were the most abundant, representing approximately 13.9% of all ESTs and 32% of the toxin-encoding messengers. These peptides are grouped in the ICK (Inhibitor Cystine Knot) family, which contains single chain molecules with low molecular mass (3-10 kDa). Due to their high number of cysteine residues, ICK peptides form intramolecular disulfide bridges. The aims of this study were to clone and express a novel ICK peptide isoform, as well as produce specific hyperimmune serum for immunoassays. The corresponding cDNA was amplified by PCR using specific primers containing restriction sites for the XhoI and BamHI enzymes; this PCR product was then ligated in the pET-14b vector and transformed into E. coli AD494 (DE3) cells. The peptide was expressed by IPTG induction for 4 h at 30 °C and purified by affinity chromatography with Ni-NTA resin. Hyperimmune serum to the recombinant peptide was produced in rabbits and was able to specifically recognize both the purified recombinant peptide and the native form present in the venom. Furthermore, the recombinant peptide was recognized by antisera raised against L. intermedia, L. gaucho and L. laeta whole venoms. The recombinant peptide obtained will enable future studies to characterize its biological activity, as well as investigations regarding possible biotechnological applications.


Assuntos
Clonagem Molecular , Peptídeos/química , Diester Fosfórico Hidrolases/química , Venenos de Aranha/química , Aranhas/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Reações Cruzadas , Eletroforese em Gel Bidimensional , Escherichia coli , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Immunoblotting , Dados de Sequência Molecular , Peso Molecular , Peptídeos/genética , Diester Fosfórico Hidrolases/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Coelhos , Proteínas Recombinantes/química , Alinhamento de Sequência , Análise de Sequência de DNA , Venenos de Aranha/genética
14.
J Cell Biochem ; 114(11): 2479-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23733617

RESUMO

UNLABELLED: Brown spider (Loxosceles genus) bites have been reported worldwide. The venom contains a complex composition of several toxins, including phospholipases-D. Native or recombinant phospholipase-D toxins induce cutaneous and systemic loxoscelism, particularly necrotic lesions, inflammatory response, renal failure, and hematological disturbances. Herein, we describe the cloning, heterologous expression and purification of a novel phospholipase-D toxin, LiRecDT7 in reference to six other previously described in phospholipase-D toxin family. The complete cDNA sequence of this novel brown spider phospholipase-D isoform was obtained and the calculated molecular mass of the predicted mature protein is 34.4 kDa. Similarity analyses revealed that LiRecDT7 is homologous to the other dermonecrotic toxin family members particularly to LiRecDT6, sharing 71% sequence identity. LiRecDT7 possesses the conserved amino acid residues involved in catalysis except for a conservative mutation (D233E) in the catalytic site. Purified LiRecDT7 was detected as a soluble 36 kDa protein using anti-whole venom and anti-LiRecDT1 sera, indicating immunological cross-reactivity and evidencing sequence-epitopes identities similar to those of other phospholipase-D family members. Also, LiRecDT7 exhibits sphingomyelinase activity in a concentration dependent-manner and induces experimental skin lesions with swelling, erythema and dermonecrosis. In addition, LiRecDT7 induced a massive inflammatory response in rabbit skin dermis, which is a hallmark of brown spider venom phospholipase-D toxins. Moreover, LiRecDT7 induced in vitro hemolysis in human erythrocytes and increased blood vessel permeability. These features suggest that this novel member of the brown spider venom phospholipase-D family, which naturally contains a mutation (D233E) in the catalytic site, could be useful for future structural and functional studies concerning loxoscelism and lipid biochemistry. HIGHLIGHTS: 1- Novel brown spider phospholipase-D recombinant toxin contains a conservative mutation (D233E) on the catalytic site. 2-LiRecDT7 shares high identity level with isoforms of Loxosceles genus. 3-LiRecDT7 is a recombinant protein immunodetected by specific antibodies to native and recombinant phospholipase-D toxins. 4-LiRecDT7 shows sphingomyelinase-D activity in a concentration-dependent manner, but less intense than other isoforms. 5-LiRecDT7 induces dermonecrosis and inflammatory response in rabbit skin. 6-LiRecDT7 increases vascular permeability in mice. 7-LiRecDT7 triggers direct complement-independent hemolysis in erythrocytes.


Assuntos
Fosfolipase D/química , Isoformas de Proteínas/química , Animais , Domínio Catalítico , Biologia Computacional , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Dados de Sequência Molecular , Mutação/genética , Fosfolipase D/genética , Fosfolipase D/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacologia , Coelhos
15.
PLoS Negl Trop Dis ; 7(5): e2206, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658852

RESUMO

Loxoscelism is the designation given to clinical symptoms evoked by Loxosceles spider's bites. Clinical manifestations include skin necrosis with gravitational spreading and systemic disturbs. The venom contains several enzymatic toxins. Herein, we describe the cloning, expression, refolding and biological evaluation of a novel brown spider protein characterized as a hyaluronidase. Employing a venom gland cDNA library, we cloned a hyaluronidase (1200 bp cDNA) that encodes for a signal peptide and a mature protein. Amino acid alignment revealed a structural relationship with members of hyaluronidase family, such as scorpion and snake species. Recombinant hyaluronidase was expressed as N-terminal His-tag fusion protein (∼45 kDa) in inclusion bodies and activity was achieved using refolding. Immunoblot analysis showed that antibodies that recognize the recombinant protein cross-reacted with hyaluronidase from whole venom as well as an anti-venom serum reacted with recombinant protein. Recombinant hyaluronidase was able to degrade purified hyaluronic acid (HA) and chondroitin sulfate (CS), while dermatan sulfate (DS) and heparan sulfate (HS) were not affected. Zymograph experiments resulted in ∼45 kDa lytic zones in hyaluronic acid (HA) and chondroitin sulfate (CS) substrates. Through in vivo experiments of dermonecrosis using rabbit skin, the recombinant hyaluronidase was shown to increase the dermonecrotic effect produced by recombinant dermonecrotic toxin from L. intermedia venom (LiRecDT1). These data support the hypothesis that hyaluronidase is a "spreading factor". Recombinant hyaluronidase provides a useful tool for biotechnological ends. We propose the name Dietrich's Hyaluronidase for this enzyme, in honor of Professor Carl Peter von Dietrich, who dedicated his life to studying proteoglycans and glycosaminoglycans.


Assuntos
Aracnídeos/enzimologia , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/isolamento & purificação , Peçonhas/enzimologia , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/isolamento & purificação , Proteínas de Artrópodes/metabolismo , Sulfatos de Condroitina/metabolismo , Clonagem Molecular , Modelos Animais de Doenças , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/metabolismo , Mordeduras e Picadas de Insetos/patologia , Dados de Sequência Molecular , Peso Molecular , Filogenia , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
16.
Toxicon ; 67: 17-30, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23462381

RESUMO

The mechanism through which brown spiders (Loxosceles genus) cause dermonecrosis, dysregulated inflammatory responses, hemolysis and platelet aggregation, which are effects reported following spider bites, is currently attributed to the presence of phospholipase-D in the venom. In the present investigation, through two-dimensional immunoblotting, we observed immunological cross-reactivity for at least 25 spots in crude Loxosceles intermedia venom, indicating high expression levels for different isoforms of phospholipase-D. Using a recombinant phospholipase-D from the venom gland of L. intermedia (LiRecDT1) in phospholipid-degrading kinetic experiments, we determined that this phospholipase-D mainly hydrolyzes synthetic sphingomyelin in a time-dependent manner, generating ceramide 1-phosphate plus choline, as well as lysophosphatidylcholine, generating lysophosphatidic acid plus choline, but exhibits little activity against phosphatidylcholine. Through immunofluorescence assays with antibodies against LiRecDT1 and using a recombinant GFP-LiRecDT1 fusion protein, we observed direct binding of LiRecDT1 to the membrane of B16-F10 cells. We determined that LiRecDT1 hydrolyzes phospholipids in detergent extracts and from ghosts of B16-F10 cells, generating choline, indicating that the enzyme can access and modulate and has activity against membrane phospholipids. Additionally, using Fluo-4, a calcium-sensitive fluorophore, it was shown that treatment of cells with phospholipase-D induced an increase in the calcium concentration in the cytoplasm, but without altering viability or causing damage to cells. Finally, based on the known endogenous activity of phospholipase-D as an inducer of cell proliferation and the fact that LiRecDT1 binds to the cell surface, hydrolyzing phospholipids to generate bioactive lipids, we employed LiRecDT1 as an exogenous source of phospholipase-D in B16-F10 cells. Treatment of the cells was effective in increasing their proliferation in a time- and concentration-dependent manner, especially in the presence of synthetic sphingomyelin in the medium. The results described herein indicate the ability of brown spider phospholipase-D to induce the generation of bioactive phospholipids, calcium influx into the cytoplasm and cell proliferation, suggesting that this molecule can be used as a bioactive tool for experimental protocols in cell biology.


Assuntos
Antineoplásicos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Fosfolipase D/farmacologia , Fosfolipídeos/metabolismo , Serina Endopeptidases/metabolismo , Venenos de Aranha/enzimologia , Animais , Aranha Marrom Reclusa , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colina/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Melanoma Experimental/metabolismo , Diester Fosfórico Hidrolases , Proteínas Recombinantes/farmacologia , Esfingomielinas/metabolismo
17.
Toxins (Basel) ; 3(3): 309-44, 2011 03.
Artigo em Inglês | MEDLINE | ID: mdl-22069711

RESUMO

Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus) venom is enriched in low molecular mass proteins (5-40 kDa). Although their venom is produced in minute volumes (a few microliters), and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins.


Assuntos
Biotecnologia/métodos , Aranha Marrom Reclusa/metabolismo , Venenos de Aranha/química , Toxinas Biológicas/farmacologia , Animais , Biomarcadores Tumorais/isolamento & purificação , Biomarcadores Tumorais/farmacologia , Hialuronoglucosaminidase/isolamento & purificação , Hialuronoglucosaminidase/farmacologia , Metaloproteases/isolamento & purificação , Metaloproteases/farmacologia , Fosfolipase D/isolamento & purificação , Fosfolipase D/farmacologia , Inibidores de Serina Proteinase/isolamento & purificação , Inibidores de Serina Proteinase/farmacologia , Venenos de Aranha/enzimologia , Toxinas Biológicas/isolamento & purificação , Proteína Tumoral 1 Controlada por Tradução
18.
Biochem Biophys Res Commun ; 409(4): 622-7, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21616057

RESUMO

Phospholipases D (PLDs) are principally responsible for the local and systemic effects of Loxosceles envenomation including dermonecrosis and hemolysis. Despite their clinical relevance in loxoscelism, to date, only the SMase I from Loxosceles laeta, a class I member, has been structurally characterized. The crystal structure of a class II member from Loxosceles intermedia venom has been determined at 1.7Å resolution. Structural comparison to the class I member showed that the presence of an additional disulphide bridge which links the catalytic loop to the flexible loop significantly changes the volume and shape of the catalytic cleft. An examination of the crystal structures of PLD homologues in the presence of low molecular weight compounds at their active sites suggests the existence of a ligand-dependent rotamer conformation of the highly conserved residue Trp230 (equivalent to Trp192 in the glycerophosphodiester phosphodiesterase from Thermus thermophofilus, PDB code: 1VD6) indicating its role in substrate binding in both enzymes. Sequence and structural analyses suggest that the reduced sphingomyelinase activity observed in some class IIb PLDs is probably due to point mutations which lead to a different substrate preference.


Assuntos
Fosfolipase D/química , Fosfolipase D/classificação , Venenos de Aranha/enzimologia , Aranhas/enzimologia , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Dados de Sequência Molecular
19.
Artigo em Inglês | MEDLINE | ID: mdl-21301094

RESUMO

Phospholipases D are the major dermonecrotic component of Loxosceles venom and catalyze the hydrolysis of phospholipids, resulting in the formation of lipid mediators such as ceramide-1-phosphate and lysophosphatidic acid which can induce pathological and biological responses. Phospholipases D can be classified into two classes depending on their catalytic efficiency and the presence of an additional disulfide bridge. In this work, both wild-type and H12A-mutant forms of the class II phospholipase D from L. intermedia venom were crystallized. Wild-type and H12A-mutant crystals were grown under very similar conditions using PEG 200 as a precipitant and belonged to space group P12(1)1, with unit-cell parameters a = 50.1, b = 49.5, c = 56.5 Å, ß = 105.9°. Wild-type and H12A-mutant crystals diffracted to maximum resolutions of 1.95 and 1.60 Å, respectively.


Assuntos
Fosfolipase D/química , Fosfolipase D/classificação , Venenos de Aranha/enzimologia , Aranhas/enzimologia , Sequência de Aminoácidos , Animais , Cristalização , Cristalografia por Raios X/métodos , Difusão , Dissulfetos/química , Escherichia coli/genética , Histidina/química , Temperatura Alta , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Peso Molecular , Mutação , Fosfolipase D/genética , Fosfolipase D/isolamento & purificação , Diester Fosfórico Hidrolases , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/classificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Homologia de Sequência de Aminoácidos , Transformação Bacteriana , Difração de Raios X
20.
Toxicon ; 57(4): 574-9, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21236288

RESUMO

Based on degradation of sphingomyelin/cholesterol liposomes containing entrapped horseradish peroxidase, we evaluated the Sphingomyelinase-D (SMase-D) activity of scorpion, spider and snake venoms by monitoring spectrophotometrically the product of oxidation of HRP released. The results indicate that Loxosceles crude venoms (Loxosceles intermedia, Loxosceles laeta, Loxosceles gaucho and Loxosceles similis) displayed SMase-D activity in a concentration-dependent manner. Furthermore, this activity was blocked by the anti-loxoscelic antivenom. However, Tityus serrulatus scorpion venom, Phoneutria nigriventer spider venom and Bothrops jararaca, Crotalus durissus, Lachesis muta and Micrurus frontalis snake venoms did not show measurable SMase-D activity.


Assuntos
Lipossomos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Venenos de Aranha/enzimologia , Aranhas , Animais , Antivenenos/farmacologia , Colesterol/química , Colesterol/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Lipossomos/química , Oxirredução , Proteínas Recombinantes , Especificidade da Espécie , Esfingomielinas/química , Esfingomielinas/metabolismo , Venenos de Aranha/toxicidade , Aranhas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA