Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
iScience ; 26(4): 106468, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091236

RESUMO

The COP9 signalosome (CSN) and cullin-RING ubiquitin ligases (CRLs) form latent CSN-CRL complexes detectable in cells. We demonstrate that the CSN variants CSNCSN7A and CSNCSN7B preferentially bind to CRL3 or CRL4A and CRL4B, respectively. Interestingly, the interacting protein ubiquitin-specific protease 15 exclusively binds to latent CSNCSN7A-CRL3, while p27KIP attaches to latent CSNCSN7B-CRL4A complex. Inhibition of deneddylation by CSN5i-3 or neddylation by MLN4924 do not impede the formation of latent complexes. Latent CSNCSN7A-CRL3 and latent CSNCSN7B-CRL4A/B particles are essential for specific cellular functions. We found that curcumin-induced cell death requires latent CSNCSN7B-CRL4A. Knockout of CSN7B in HeLa cells leads to resistance against curcumin. Remarkably, the small GTPase RAB18 recruits latent CSNCSN7A-CRL3 complex to lipid droplets (LDs), where CRL3 is activated by neddylation, an essential event for LD formation during adipogenesis. Knockdown of CSN7A or RAB18 or destabilization of latent complexes by cutting off CSN7A C-terminal 201-275 amino acids blocks adipogenesis.

2.
Biochim Biophys Acta Mol Cell Res ; 1869(12): 119364, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162648

RESUMO

Crosstalk within the gastric epithelium, which is closely in contact with stromal fibroblasts in the gastric mucosa, has a pivotal impact in proliferation, differentiation and transformation of the gastric epithelium. The human pathogen Helicobacter pylori colonises the gastric epithelium and represents a risk factor for gastric pathophysiology. Infection of H. pylori induces the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which is involved in the pro-inflammatory response but also in cell survival. In co-cultures with human gastric fibroblasts (HGF), we found that apoptotic cell death is reduced in the polarised human gastric cancer cell line NCI-N87 or in gastric mucosoids during H. pylori infection. Interestingly, suppression of apoptotic cell death in NCI-N87 cells involved an enhanced A20 expression regulated by NF-κB activity in response to H. pylori infection. Moreover, A20 acts as an important negative regulator of caspase-8 activity, which was suppressed in NCI-N87 cells during co-culture with gastric fibroblasts. Our results provide evidence for NF-κB-dependent regulation of apoptotic cell death in cellular crosstalk and highlight the protective role of gastric fibroblasts in gastric epithelial cell death during H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Caspase 8/metabolismo , Sobrevivência Celular , Técnicas de Cocultura , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Humanos , NF-kappa B/metabolismo , Fatores de Transcrição/metabolismo
3.
Cell Mol Life Sci ; 79(8): 461, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913642

RESUMO

The human pathogen Helicobacter pylori represents a risk factor for the development of gastric diseases including cancer. The H. pylori-induced transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is involved in the pro-inflammatory response and cell survival in the gastric mucosa, and represents a trailblazer of gastric pathophysiology. Termination of nuclear NF-κB heterodimer RelA/p50 activity is regulated by the ubiquitin-RING-ligase complex elongin-cullin-suppressor of cytokine signalling 1 (ECSSOCS1), which leads to K48-ubiquitinylation and degradation of RelA. We found that deubiquitinylase (DUB) ubiquitin specific protease 48 (USP48), which interacts with the COP9 signalosome (CSN) subunit CSN1, stabilises RelA by deubiquitinylation and thereby promotes the transcriptional activity of RelA to prolong de novo synthesis of DUB A20 in H. pylori infection. An important role of A20 is the suppression of caspase-8 activity and apoptotic cell death. USP48 thus enhances the activity of A20 to reduce apoptotic cell death in cells infected with H. pylori. Our results, therefore, define a synergistic mechanism by which USP48 and A20 regulate RelA and apoptotic cell death in H. pylori infection.


Assuntos
Infecções por Helicobacter , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Proteases Específicas de Ubiquitina , Sobrevivência Celular , Helicobacter pylori , Humanos , NF-kappa B/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
4.
ACS Appl Bio Mater ; 5(5): 2262-2272, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35500214

RESUMO

Previous studies have shown that chemotherapeutic efficacy could be enhanced with targeted drug delivery. Various DNA origami nanostructures have been investigated as drug carriers. Here, we compared drug delivery functionalities of three similar DNA origami nanostructures, Disc, Donut, and Sphere, that differ in structural dimension. Our results demonstrated that Donut was the most stable and exhibited the highest Dox-loading capacity. MUC1 aptamer modification in our nanostructures increased cellular uptake in MUC1-high MCF-7. Among the three nanostructures, unmodified Donut exerted the highest Dox cytotoxicity in MCF-7, and MUC1 aptamer modification did not further improve its effect, implicating that Dox delivery by Donut was efficient. However, all Dox-loaded nanostructures showed comparable cytotoxicity in MDA-MB-231 due to the innate sensitivity of this cell line to Dox. Our results successfully demonstrated that functional properties of DNA origami nanocarriers could be tuned by structural design, and three-dimensional Donut appeared to be the most efficient nanocarrier.


Assuntos
Neoplasias da Mama , Nanoestruturas , Neoplasias da Mama/tratamento farmacológico , DNA/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Feminino , Humanos , Nanoestruturas/química
5.
Cell Mol Life Sci ; 79(2): 86, 2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35066747

RESUMO

Deubiquitinylases (DUBs) are central regulators of the ubiquitin system involved in protein regulation and cell signalling and are important for a variety of physiological processes. Most DUBs are cysteine proteases, and few other proteases are metalloproteases of the JAB1/MPN +/MOV34 protease family (JAMM). STAM-binding protein like 1 (STAMBPL1), a member of the JAMM family, cleaves ubiquitin bonds and has a function in regulating cell survival, Tax-mediated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and epithelial-mesenchymal transition. However, the molecular mechanism by which STAMBPL1 influences cell survival is not well defined, especially with regard to its deubiquitinylation function. Here, we show that reactive oxygen species (ROS) induced by chemotherapeutic agents or the human microbial pathogen Helicobacter pylori can induce cullin 1-RING ubiquitin ligase (CRL1) and 26S proteasome-dependent degradation STAMBPL1. Interestingly, STAMBPL1 has a direct interaction with the constitutive photomorphogenic 9 (COP9 or CSN) signalosome subunits CSN5 and CSN6. The interaction with the CSN is required for the stabilisation and function of the STAMBPL1 protein. In addition, STAMBPL1 deubiquitinylates the anti-apoptotic protein Survivin and thus ameliorates cell survival. In summary, our data reveal a previously unknown mechanism by which the deubiquitinylase STAMBPL1 and the E3 ligase CRL1 balance the level of Survivin degradation and thereby determine apoptotic cell death. In response to genotoxic stress, the degradation of STAMBPL1 augments apoptotic cell death. This new mechanism may be useful to develop therapeutic strategies targeting STAMBPL1 in tumours that have high STAMBPL1 and Survivin protein levels.


Assuntos
Apoptose , Complexo do Signalossomo COP9/metabolismo , Helicobacter pylori/fisiologia , Peptídeo Hidrolases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Doxorrubicina/farmacologia , Humanos , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Survivina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Biomedicines ; 9(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440074

RESUMO

Gastric cancer is considered one of the most common causes of cancer-related death worldwide and, thus, a major health problem. A variety of environmental factors including physical and chemical noxae, as well as pathogen infections could contribute to the development of gastric cancer. The transcription factor nuclear factor kappa B (NF-κB) and its dysregulation has a major impact on gastric carcinogenesis due to the regulation of cytokines/chemokines, growth factors, anti-apoptotic factors, cell cycle regulators, and metalloproteinases. Changes in NF-κB signaling are directed by genetic alterations in the transcription factors themselves, but also in NF-κB signaling molecules. NF-κB actively participates in the crosstalk of the cells in the tumor micromilieu with divergent effects on the heterogeneous tumor cell and immune cell populations. Thus, the benefits/consequences of therapeutic targeting of NF-κB have to be carefully evaluated. In this review, we address recent knowledge about the mechanisms and consequences of NF-κB dysregulation in gastric cancer development and therapy.

7.
Biomolecules ; 10(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708147

RESUMO

The COP9 signalosome (CSN) is a signaling platform controlling the cellular ubiquitylation status. It determines the activity and remodeling of ~700 cullin-RING ubiquitin ligases (CRLs), which control more than 20% of all ubiquitylation events in cells and thereby influence virtually any cellular pathway. In addition, it is associated with deubiquitylating enzymes (DUBs) protecting CRLs from autoubiquitylation and rescuing ubiquitylated proteins from degradation. The coordination of ubiquitylation and deubiquitylation by the CSN is presumably important for fine-tuning the precise formation of defined ubiquitin chains. Considering its intrinsic DUB activity specific for deneddylation of CRLs and belonging to the JAMM family as well as its associated DUBs, the CSN represents a multi-DUB complex. Two CSN-associated DUBs, the ubiquitin-specific protease 15 (USP15) and USP48 are regulators in the NF-κB signaling pathway. USP15 protects CRL1ß-TrCP responsible for IκBα ubiquitylation, whereas USP48 stabilizes the nuclear pool of the NF-κB transcription factor RelA upon TNF stimulation by counteracting CRL2SOCS1. Moreover, the CSN controls the neddylation status of cells by its intrinsic DUB activity and by destabilizing the associated deneddylation enzyme 1 (DEN1). Thus, the CSN is a master regulator at the intersection between ubiquitylation and neddylation.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Animais , Proteínas Culina/metabolismo , Enzimas Desubiquitinantes/metabolismo , Humanos , Modelos Moleculares , NF-kappa B/metabolismo , Mapas de Interação de Proteínas , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
8.
PLoS One ; 12(12): e0189628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29232409

RESUMO

Lupeol and stigmasterol, major phytosterols in various herbal plants, possess anti-inflammatory activities and have been proposed as candidates for anti-cancer agents, but their molecular mechanisms are still unclear. Here, we investigated the effects of lupeol and stigmasterol on tumor and endothelial cells in vitro and their anti-cancer activities in vivo. Our results demonstrated that lupeol and stigmasterol suppressed cell viability, migration, and morphogenesis of human umbilical vein endothelial cells (HUVECs) but not cholangiocarcinoma (CCA) cells. Expression analyses showed that the treatment of both compounds significantly reduced the transcript level of tumor necrosis factor-α (TNF-α), and Western blot analyses further revealed a decrease in downstream effector levels of VEGFR-2 signaling, including phosphorylated forms of Src, Akt, PCL, and FAK, which were rescued by TNF-α treatment. In vivo, lupeol and stigmasterol disrupted tumor angiogenesis and reduced the growth of CCA tumor xenografts. Immunohistochemical analyses confirmed a decrease in CD31-positive vessel content and macrophage recruitment upon treatment. These findings indicate that lupeol and stigmasterol effectively target tumor endothelial cells and suppress CCA tumor growth by their anti-inflammatory activities and are attractive candidates for anti-cancer treatment of CCA tumors.


Assuntos
Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/patologia , Regulação para Baixo/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Triterpenos Pentacíclicos/farmacologia , Estigmasterol/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Colangiocarcinoma/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Asian Pac J Cancer Prev ; 16(15): 6513-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26434867

RESUMO

BACKGROUND: Recent attention on chemotherapeutic intervention against cancer has been focused on discovering and developing phytochemicals as anticancer agents with improved efficacy, low drug resistance and toxicity, low cost and limited adverse side effects. In this study, we investigated the effects of Curcuma C20-dialdehyde on growth, apoptosis and cell cycle arrest in colon and cervical cancer cell lines. MATERIALS AND METHODS: Antiproliferative, apoptosis induction, and cell cycle arrest activities of Curcuma C20-dialdehyde were determined by WST cell proliferation assay, flow cytometric Alexa fluor 488-annexin V/propidium iodide (PI) staining and PI staining, respectively. RESULTS: Curcuma C20 dialdehyde suppressed the proliferation of HCT116, HT29 and HeLa cells, with IC50 values of 65.4±1.74 µg/ml, 58.4±5.20 µg/ml and 72.0±0.03 µg/ml, respectively, with 72 h exposure. Flow cytometric analysis revealed that percentages of early apoptotic cells increased in a dose-dependent manner upon exposure to Curcuma C20-dialdehyde. Furthermore, exposure to lower concentrations of this compound significantly induced cell cycle arrest at G1 phase for both HCT116 and HT29 cells, while higher concentrations increased sub-G1 populations. However, the concentrations used in this study could not induce cell cycle arrest but rather induced apoptotic cell death in HeLa cells. CONCLUSIONS: Our findings suggest that the phytochemical Curcuma C20-dialdehyde may be a potential antineoplastic agent for colon and cervical cancer chemotherapy and/or chemoprevention. Further studies are needed to characterize the drug target or mode of action of the Curcuma C20-dialdehyde as an anticancer agent.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Antineoplásicos/administração & dosagem , Diterpenos/administração & dosagem , Células HCT116 , Células HT29 , Células HeLa , Humanos , Concentração Inibidora 50
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA