Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 41(8): 2105-2117, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35254981

RESUMO

The Spreading Projection Algorithm for Rapid K-space sampLING, or SPARKLING, is an optimization-driven method that has been recently introduced for accelerated 2D MRI using compressed sensing. It has then been extended to address 3D imaging using either stacks of 2D sampling patterns or a local 3D strategy that optimizes a single sampling trajectory at a time. 2D SPARKLING actually performs variable density sampling (VDS) along a prescribed target density while maximizing sampling efficiency and meeting the gradient-based hardware constraints. However, 3D SPARKLING has remained limited in terms of acceleration factors along the third dimension if one wants to preserve a peaky point spread function (PSF) and thus good image quality. In this paper, in order to achieve higher acceleration factors in 3D imaging while preserving image quality, we propose a new efficient algorithm that performs optimization on full 3D SPARKLING. The proposed implementation based on fast multipole methods (FMM) allows us to design sampling patterns with up to 107 k-space samples, thus opening the door to 3D VDS. We compare multi-CPU and GPU implementations and demonstrate that the latter is optimal for 3D imaging in the high-resolution acquisition regime ( 600µ m isotropic). Finally, we show that this novel optimization for full 3D SPARKLING outperforms stacking strategies or 3D twisted projection imaging through retrospective and prospective studies on NIST phantom and in vivo brain scans at 3 Tesla taking the particular case of T2 *-w imaging. Overall the proposed method allows for 2.5-3.75x shorter scan times compared to GRAPPA-4 parallel imaging acquisition at 3 Tesla without compromising image quality.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Estudos Prospectivos , Estudos Retrospectivos
2.
J Alzheimers Dis ; 66(2): 517-532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30198874

RESUMO

Molecular dynamics simulation and in vitro nuclear magnetic resonance (NMR) studies on glutathione (GSH) indicated existence of closed and extended conformations. The present work in a multi-center research setting reports in-depth analysis of GSH conformers in vivo using a common magnetic resonance spectroscopy (MRS) protocol and signal processing scheme. MEGA-PRESS pulse sequence was applied on healthy subjects using 3T Philips MRI scanner (India) and 3T GE MRI scanner (Norway) using the same experimental parameters (echo time, repetition time, and selective 180° refocusing ON-pulse at 4.40 ppm and 4.56 ppm). All MRS data were processed at one site National Brain Research Center (NBRC) using in-house MRS processing toolbox (KALPANA) for consistency. We have found that both the closed and extended GSH conformations are present in human brain and the relative proportion of individual conformer peak depends on the specific selection of refocusing ON-pulse position in MEGA-PRESS pulse sequence. It is important to emphasize that in vivo experiments with different refocusing and inversion pulse positions, echo time, and voxel size, clearly evidence the presence of both the GSH conformations. The GSH conformer peak positions for the closed GSH (Cys-Hß) peak at ∼2.80 ppm and extended GSH (Cys-Hß) peak at ∼2.95 ppm remain consistent irrespective of the selective refocusing OFF-pulse positions. This is the first in vivo study where both extended and closed GSH conformers are detected using the MEGA-PRESS sequence employing the parameters derived from the high resolution in vitro NMR studies on GSH.


Assuntos
Encéfalo/metabolismo , Glutationa/química , Glutationa/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Conformação Proteica , Trítio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA