Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
ACS Infect Dis ; 7(12): 3182-3196, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34734708

RESUMO

With the acquirement of antibiotic resistance, Shigella has resulted in multiple epidemics of shigellosis, an infectious diarrheal disease, causing thousands of deaths per year. Unfortunately, there are no licensed vaccines, primarily due to low or serotype-specific immunogenicity. Thus, conserved subunit vaccines utilizing recombinant invasion plasmid antigens (Ipa) have been explored as cross-protective vaccine candidates. However, achieving cross-protection against Shigella dysenteriae 1, which caused multiple pandemics/epidemics in the recent past, has been difficult. Therefore, a rational approach to improve cross-protection in the preparation for a possible pandemic should involve conserved proteins from S. dysenteriae 1 (Sd1). IpaC is one such conserved immunogenic protein that is less explored as an independent vaccine due to its instability/aggregation. Therefore, to improve cross-protection and potential immunogenicity and to be prepared for a future epidemic/pandemic, herein, we stabilized recombinant Sd1 IpaC, expressed without its chaperone, using a previously reported stabilizing detergent (LDAO) in a modified protocol and assessed its vaccine potential without an adjuvant. The protein assembled into heterogeneous complex spherical structures in the presence of LDAO and showed improved stability at storage temperatures of -80, -20, 4, 25, and 37 °C while providing enhanced yield and concentration. The protein could also be stably lyophilized and reconstituted, increasing the convenience of transportation and storage. Upon intranasal administration in BALB/c mice, the stabilized-IpaC-immunized groups generated significant antibody response and were not only protected against a high intraperitoneal dose of homologous S. dysenteriae 1 but also showed 100% survival against heterologous Shigella flexneri 2a without an adjuvant, while the control animals showed visible diarrhea (bloody-Sd1 challenge), lethargy, and weight loss with 0% survival. Overall, this work demonstrates that stabilized IpaC can be explored as a minimalist, self-adjuvanting, cross-protective, intranasal, single-antigen Shigella vaccine.


Assuntos
Disenteria Bacilar , Vacinas contra Shigella , Shigella , Administração Intranasal , Animais , Disenteria Bacilar/prevenção & controle , Camundongos , Shigella/genética , Vacinas contra Shigella/genética , Vacinas Sintéticas/genética
3.
Am J Physiol Gastrointest Liver Physiol ; 316(2): G229-G246, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30406698

RESUMO

Whether zinc (Zn2+) regulates barrier functions by modulating tight-junction (TJ) proteins when pathogens such as Shigella alter epithelial permeability is still unresolved. We investigated the potential benefits of Zn2+ in restoring impaired barrier function in vivo in Shigella-infected mouse tissue and in vitro in T84 cell monolayers. Basolateral Shigella infection triggered a time-dependent decrease in transepithelial resistance followed by an increase in paracellular permeability of FITC-labeled dextran and altered ion selectivity. This led to ion and water loss into the intestinal lumen. Immunofluorescence studies revealed redistribution of claudin-2 and -4 to an intracellular location and accumulation of these proteins in the cytoplasm following infection. Zn2+ ameliorated this perturbed barrier by redistribution of claudin-2 and -4 back to the plasma membrane and by modulating the phosphorylation state of TJ proteins t hough extracellular signal-regulated kinase (ERK)1/2 dependency. Zn2+ prevents elevation of IL-6 and IL-8. Mice challenged with Shigella showed that oral Zn2+supplementation diminished diverse pathophysiological symptoms of shigellosis. Claudin-2 and -4 were susceptible to Shigella infection, resulting in altered barrier function and increased levels of IL-6 and IL-8. Zn2+ supplementation ameliorated this barrier dysfunction, and the inflammatory response involving ERK-mediated change of phosphorylation status for claudin-2 and -4. Thus, Zn2+ may have potential therapeutic value in inflammatory diarrhea and shigellosis. NEW & NOTEWORTHY Our study addresses whether Zn2+ could be an alternative strategy to reduce Shigella-induced inflammatory response and epithelial barrier dysfunction. We have defined a mechanism in terms of intracellular signaling pathways and tight-junction protein expression by Zn2+. Claudin-2 and -4 are susceptible to Shigella infection, whereas in the presence of Zn2+ they are resistant to infection-related barrier dysfunction involving ERK-mediated change of phosphorylation status of claudins.


Assuntos
Claudina-2/metabolismo , Claudina-4/metabolismo , Permeabilidade/efeitos dos fármacos , Zinco/farmacologia , Animais , Claudina-2/efeitos dos fármacos , Claudina-4/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Enteropatias/tratamento farmacológico , Enteropatias/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Zinco/metabolismo
4.
BMC Pediatr ; 17(1): 23, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28095802

RESUMO

BACKGROUND: Infant mortality has dropped considerably in India over the last 5 years. A sharp contrast to this decline in national average of infant mortality is the rate recorded during 2014-2015 from the southernmost district of Saiha, Mizoram having a common international border with Myanmar. As this district specific rate (113 per 1000 live births) is 3 times higher compared to the national and state average, the present investigation was carried out to identify associated factors. METHODS: We examined secondary data made available by the national health mission, consulted with local community members and generated primary data through interviews. A case-control study design was followed. Mothers, who delivered a child during 2013-2015 and subsequently lost them due to infant death, formed the case group and controls were selected from same neighborhood as with case-mothers. The mother and child tracking system maintained by the district specific national health mission office was used for recruiting cases and controls. A total of 195 mothers were interviewed; 66 of them belonged to 'cases' and 129 were 'controls'. RESULTS: The mean age of the respondents was 27 years (median 27; SD ± 5; minimum 17 & maximum 44). In uni-variate analyses 'child delivery at home', 'low birth weight', 'non-attendance of school by mothers', 'completed standard of school education by mothers', 'both parents working', 'mothers receiving blood transfusion during last pregnancy', and 'fourth or more birth order during last pregnancy' were associated with infant deaths. Intriguingly, the number of daily kuhva (raw areca nut) intake during last pregnancy was significantly higher among case-mothers compared to controls. In conditional logistic regression, 'low birth weight' (adjusted OR (AOR) 14.7; 95% CI 2.1-101.8; p = 0.006), and 'consumption of 4 or more kuhva per day' (AOR 8; 95% CI 1.9-34.3; p = 0.005) were independently associated with infant-death-experiences. CONCLUSION: The present investigation merits due attention from policy makers and health planners for immediate improvement in peri-natal and neonatal care services in the remote district of Saiha. Need for further research exploring socio-behavioural issues around areca nut consumption and effects of interventions to reduce areca nut intake on maternal and children health are underscored.


Assuntos
Disparidades nos Níveis de Saúde , Morte do Lactente/etiologia , Morte Perinatal/etiologia , Saúde da População Rural/estatística & dados numéricos , Estudos de Casos e Controles , Feminino , Comportamentos Relacionados com a Saúde , Inquéritos Epidemiológicos , Humanos , Índia/epidemiologia , Lactente , Mortalidade Infantil , Recém-Nascido , Modelos Logísticos , Masculino , Serviços de Saúde Materna , Análise Multivariada , Mianmar , Fatores de Risco , Fatores Socioeconômicos
5.
J Biol Chem ; 291(52): 26816-26836, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27799301

RESUMO

Accessory cholera enterotoxin (Ace) of Vibrio cholerae has been shown to contribute to diarrhea. However, the signaling mechanism and specific type of Cl- channel activated by Ace are still unknown. We have shown here that the recombinant Ace protein induced ICl of apical plasma membrane, which was inhibited by classical CaCC blockers. Surprisingly, an Ace-elicited rise of current was neither affected by ANO1 (TMEM16A)-specific inhibitor T16A(inh)-AO1(TAO1) nor by the cystic fibrosis transmembrane conductance regulator (CFTR) blocker, CFTR inh-172. Ace stimulated whole-cell current in Caco-2 cells. However, the apical ICl was attenuated by knockdown of ANO6 (TMEM16F). This impaired phenotype was restored by re-expression of ANO6 in Caco-2 cells. Whole-cell patch clamp recordings of ANO currents in HEK293 cells transiently expressing mouse ANO1-mCherry or ANO6-GFP confirmed that Ace induced Cl- secretion. Application of Ace produced ANO6 but not the ANO1 currents. Ace was not able to induce a [Ca2+]i rise in Caco-2 cells, but cellular abundance of phosphatidylinositol 4,5-bisphosphate (PIP2) increased. Identification of the PIP2-binding motif at the N-terminal sequence among human and mouse ANO6 variants along with binding of PIP2 directly to ANO6 in HEK293 cells indicate likely PIP2 regulation of ANO6. The biophysical and pharmacological properties of Ace stimulated Cl- current along with intestinal fluid accumulation, and binding of PIP2 to the proximal KR motif of channel proteins, whose mutagenesis correlates with altered binding of PIP2, is comparable with ANO6 stimulation. We conclude that ANO6 is predominantly expressed in intestinal epithelia, where it contributes secretory diarrhea by Ace stimulation in a calcium-independent mechanism of RhoA-ROCK-PIP2 signaling.


Assuntos
Cloretos/metabolismo , Toxina da Cólera/toxicidade , Cólera/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Anoctaminas , Sequência de Bases , Sistemas CRISPR-Cas , Células CACO-2 , Cálcio/metabolismo , Cólera/induzido quimicamente , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Células HEK293 , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Proteínas de Transferência de Fosfolipídeos/antagonistas & inibidores , Proteínas de Transferência de Fosfolipídeos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Vibrio cholerae/patogenicidade , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética
6.
Methods Mol Biol ; 1403: 433-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27076146

RESUMO

Shigellosis remains a serious issue throughout the developing countries, particularly in children under the age of 5. Numerous strategies have been tested to develop vaccines targeting shigellosis; unfortunately despite several years of extensive research, no safe, effective, and inexpensive vaccine against shigellosis is available so far. Here, we illustrate in detail an approach to identify and establish immunogenic outer membrane proteins from Shigella flexneri 2a as subunit vaccine candidates.


Assuntos
Vacinas contra Shigella/imunologia , Shigella/imunologia , Animais , Antígenos de Bactérias/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Clonagem Molecular , Feminino , Expressão Gênica , Ativação Linfocitária/imunologia , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência , Vacinas contra Shigella/genética , Vacinas contra Shigella/isolamento & purificação , Linfócitos T/citologia , Linfócitos T/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/isolamento & purificação
7.
Infect Immun ; 84(5): 1478-1490, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26930702

RESUMO

Proteases in Vibrio cholerae have been shown to play a role in its pathogenesis. V. cholerae secretes Zn-dependent hemagglutinin protease (HAP) and calcium-dependent trypsin-like serine protease (VesC) by using the type II secretion system (TIISS). Our present studies demonstrated that these proteases are also secreted in association with outer membrane vesicles (OMVs) and transported to human intestinal epithelial cells in an active form. OMV-associated HAP induces dose-dependent apoptosis in Int407 cells and an enterotoxic response in the mouse ileal loop (MIL) assay, whereas OMV-associated VesC showed a hemorrhagic fluid response in the MIL assay, necrosis in Int407 cells, and an increased interleukin-8 (IL-8) response in T84 cells, which were significantly reduced in OMVs from VesC mutant strain. Our results also showed that serine protease VesC plays a role in intestinal colonization of V. cholerae strains in adult mice. In conclusion, our study shows that V. cholerae OMVs secrete biologically active proteases which may play a role in cytotoxic and inflammatory responses.


Assuntos
Exossomos/enzimologia , Inflamação/patologia , Peptídeo Hidrolases/metabolismo , Vibrio cholerae/enzimologia , Vibrio cholerae/patogenicidade , Fatores de Virulência/metabolismo , Animais , Morte Celular , Linhagem Celular , Células Epiteliais/patologia , Humanos , Íleo/microbiologia , Íleo/patologia , Camundongos Endogâmicos BALB C
8.
PLoS One ; 10(11): e0141283, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26540279

RESUMO

Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX) and Accessory cholera enterotoxin (Ace) secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser attention has been paid to the interaction of chloride channel modulators with bacterial toxins. Here we report the modulation of the structure/function of recombinant Ace by small molecule calcium-activated chloride channel (CaCC) inhibitors, namely CaCCinh-A01, digallic acid (DGA) and tannic acid. Biophysical studies indicate that the unfolding (induced by urea) free energy increases upon binding CaCCinh-A01 and DGA, compared to native Ace, whereas binding of tannic acid destabilizes the protein. Far-UV CD experiments revealed that the α-helical content of Ace-CaCCinh-A01 and Ace-DGA complexes increased relative to Ace. In contrast, binding to tannic acid had the opposite effect, indicating the loss of protein secondary structure. The modulation of Ace structure induced by CaCC inhibitors was also analyzed using docking and molecular dynamics (MD) simulation. Functional studies, performed using mouse ileal loops and Ussing chamber experiments, corroborate biophysical data, all pointing to the fact that tannic acid destabilizes Ace, inhibiting its function, whereas DGA stabilizes the toxin with enhanced fluid accumulation in mouse ileal loop. The efficacy of tannic acid in mouse model suggests that the targeted modulation of Ace structure may be of therapeutic benefit for gastrointestinal disorders.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Toxina da Cólera/fisiologia , Vibrio cholerae/fisiologia , Animais , Cólera/fisiopatologia , Toxina da Cólera/antagonistas & inibidores , Dicroísmo Circular , Depsídeos/farmacologia , Diarreia/fisiopatologia , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Proteínas Recombinantes , Espectrometria de Fluorescência , Taninos/farmacologia , Tiofenos/farmacologia
9.
PLoS One ; 9(10): e109107, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25286253

RESUMO

B cells are critically important in combating bacterial infections and their differentiation into plasma cells and memory cells aids bacterial clearance and long-lasting immunity conferred by essentially all vaccines. Outer membrane protein A (OmpA) of Shigella flexneri 2a has been demonstrated to induce the production of IgG and IgA in vivo following immunization of mice through intranasal route, but the direct involvement of B cells in OmpA-mediated immune regulation was not determined. Consequently, we investigated whether OmpA can modulate B cell functions and identified the molecular events involved in OmpA-induced B cell immune response in vitro. We show that OmpA of S. flexneri 2a activates B cells to produce protective cytokines, IL-6 and IL-10 as well as facilitates their differentiation into antibody secreting cells (ASCs). The immunostimulatory properties of OmpA are attributed to the increased surface expression of MHCII and CD86 on B cells. We also report here that B cell activation by OmpA is mediated strictly through recognition by TLR2, resulting in initiation of cascades of signal transduction events, involving increased phosphorylation of protein tyrosine kinases (PTKs), ERK and IκBα, leading to nuclear translocation of NF-κB. Importantly, a TLR2 antibody diminishes OmpA-induced upregulation of MHCII and CD86 on B cell surface as well as significantly inhibits B cell differentiation and cytokine secretion. Furthermore, we illustrate that B cell differentiation into ASCs and induction of cytokine secretion by OmpA are dependent on PTKs activity. Moreover, we identify that OmpA-induced B cell differentiation is entirely dependent on ERK pathway, whereas both NF-κB and ERK are essential for cytokine secretion by B cells. Overall, our data demonstrate that OmpA of S. flexneri 2a amplifies TLR signaling in B cells and triggers B cell immune response, which is critical for the development of an effective adaptive immunity to an optimal vaccine antigen.


Assuntos
Linfócitos B/citologia , Proteínas da Membrana Bacteriana Externa/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , NF-kappa B/metabolismo , Proteínas Tirosina Quinases/metabolismo , Shigella flexneri/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Células Produtoras de Anticorpos/metabolismo , Apresentação de Antígeno/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Antígeno B7-2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Interleucina-10/biossíntese , Interleucina-6/biossíntese , Ativação Linfocitária/imunologia , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos BALB C , Fosforilação , Receptor 2 Toll-Like/genética , Receptor 6 Toll-Like/metabolismo , Regulação para Cima/genética
10.
Microbiol Immunol ; 57(11): 762-71, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24033533

RESUMO

The protective efficacy of and immune response to heat-killed cells of monovalent and hexavalent mixtures of six serogroups/serotypes of Shigella strains (Shigella dysenteriae 1, Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, Shigella boydii 4, and Shigella sonnei) were examined in a guinea pig colitis model. A monovalent or hexavalent mixture containing 1 × 10(7) of each serogroup/serotype of heat-killed Shigella cells was administered orally on Days 0, 7, 14 and 21. On Day 28, the immunized animals were challenged rectally with 1 × 10(9) live virulent cells of each of the six Shigella serogroups/serotypes. In all immunized groups, significant levels of protection were observed after these challenges. The serum titers of IgG and IgA against the lipopolysaccharide of each of the six Shigella serogroups/serotypes increased exponential during the course of immunization. High IgA titers against the lipopolysaccharide of each of the six Shigella serogroups/serotypes were also observed in intestinal lavage fluid from all immunized animals. These data indicate that a hexavalent mixture of heat-killed cells of the six Shigella serogroups/serotypes studied would be a possible broad-spectrum candidate vaccine against shigellosis.


Assuntos
Colite/imunologia , Colite/prevenção & controle , Disenteria Bacilar/imunologia , Disenteria Bacilar/prevenção & controle , Vacinas contra Shigella/imunologia , Shigella/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Colite/microbiologia , Modelos Animais de Doenças , Disenteria Bacilar/microbiologia , Feminino , Cobaias , Humanos , Imunização , Masculino , Shigella/química , Shigella/classificação , Vacinas contra Shigella/administração & dosagem , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
11.
Vaccine ; 31(36): 3644-50, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23764536

RESUMO

Shigellosis is the leading cause of childhood mortality and morbidity. Despite many years of extensive research a practical vaccine is not yet available against the disease. Recent studies illustrate that bacterial outer membrane proteins are budding target as vaccine antigen. Outer membrane proteins A (OmpA) are among the most immunodominant antigens in the outer membrane of gram negative bacteria and possess many characteristics desired of a vaccine candidate. We observe that OmpA of Shigella flexneri 2a is crossreactive and common antigen among Shigella spp. and the epitope is widely exposed on the cell surface as well as capable of evoking protective immunity in mice. The protective immunity involves participation of both the humoral and cellular immune responses, since OmpA boosts rapid induction of IgG and IgA in both the systemic and mucosal compartments and also activates Th1 cells. The immunopotentiating activity of OmpA is mediated by its ability to bind and stimulate macrophages and up-regulate the surface expression of MHCII, CD80 and CD40, leading to activation of CD4(+) T cells to secrete cytokines and express chemokine receptor and IL-12Rß2, thereby orchestrating the bridge between innate and adaptive immune responses. This ability is dependent on Toll-like receptor 2 (TLR2), as demonstrated by lack of response by TLR2 knockdown macrophages to OmpA. Hence this property of OmpA to link innate and adaptive immunity via TLR2 offers a novel vista to develop vaccine against shigellosis.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Disenteria Bacilar/prevenção & controle , Shigella flexneri/imunologia , Imunidade Adaptativa , Animais , Antígenos de Bactérias/imunologia , Proteção Cruzada , Imunidade Celular , Imunidade Humoral , Imunidade Inata , Camundongos , Receptor 2 Toll-Like/imunologia
12.
J Biol Chem ; 288(28): 20404-15, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23720748

RESUMO

The apical membrane of intestinal epithelia expresses intermediate conductance K(+) channel (KCNN4), which provides the driving force for Cl(-) secretion. However, its role in diarrhea and regulation by Epac1 is unknown. Previously we have established that Epac1 upon binding of cAMP activates a PKA-independent mechanism of Cl(-) secretion via stimulation of Rap2-phospholipase Cε-[Ca(2+)]i signaling. Here we report that Epac1 regulates surface expression of KCNN4c channel through its downstream Rap1A-RhoA-Rho-associated kinase (ROCK) signaling pathway for sustained Cl(-) secretion. Depletion of Epac1 protein and apical addition of TRAM-34, a specific KCNN4 inhibitor, significantly abolished cAMP-stimulated Cl(-) secretion and apical K(+) conductance (IK(ap)) in T84WT cells. The current-voltage relationship of basolaterally permeabilized monolayers treated with Epac1 agonist 8-(4-chlorophenylthio)-2'-O- methyladenosine 3',5'-cyclic monophosphate showed the presence of an inwardly rectifying and TRAM-34-sensitive K(+) channel in T84WT cells that was absent in Epac1KDT84 cells. Reconstructed confocal images in Epac1KDT84 cells revealed redistribution of KCNN4c proteins into subapical intracellular compartment, and a biotinylation assay showed ∼83% lower surface expression of KCNN4c proteins compared with T84WT cells. Further investigation revealed that an Epac1 agonist activates Rap1 to facilitate IK(ap). Both RhoA inhibitor (GGTI298) and ROCK inhibitor (H1152) significantly reduced cAMP agonist-stimulated IK(ap), whereas the latter additionally reduced colocalization of KCNN4c with the apical membrane marker wheat germ agglutinin in T84WT cells. In vivo mouse ileal loop experiments showed reduced fluid accumulation by TRAM-34, GGTI298, or H1152 when injected together with cholera toxin into the loop. We conclude that Rap1A-dependent signaling of Epac1 involving RhoA-ROCK is an important regulator of intestinal fluid transport via modulation of apical KCNN4c channels, a finding with potential therapeutic value in diarrheal diseases.


Assuntos
Cloretos/metabolismo , Diarreia/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Western Blotting , Linhagem Celular Tumoral , Toxina da Cólera , Colforsina/farmacologia , AMP Cíclico/farmacologia , Diarreia/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos , Microscopia Confocal , Bloqueadores dos Canais de Potássio/farmacologia , Pirazóis/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
13.
Vaccine ; 31(31): 3163-73, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23684822

RESUMO

Recently, we have demonstrated, immunization of adult female mice with outer membrane vesicles (OMVs) of Shigella boydii type 4 protected their offspring passively from shigellosis. In our present study, we have advanced our research by formulating multi-serotype outer membrane vesicles (MOMVs), mixing the OMVs of Shigella dysenteriae 1 Δstx, Shigella flexneri 2a, 3a and 6, S. boydii type 4 and Shigella sonnei to achieve a broad spectrum protection against shigellosis. Adult mice were immunized orally with 50 µg of MOMVs, four times at weekly intervals. Immunological parameters were observed at various time points, before, during and after immunization, in adult mice. Passive protection was examined in their offspring by measuring protective efficacy and studying intestinal colonization, after challenging with various Shigella strains. Immunized dams exhibited a consistent broad spectrum antibody response. 3-4 day-old offspring of immunized dams showed significant long term passive protection against wild type S. flexneri 2a, 3a, and 6, S. boydii type 2 and S. dysenteriae 1. Their stomach extracts, essentially containing mother's milk, have also exhibited significant levels of anti-MOMVs immunoglobulins. In conclusion, MOMVs formulation represents an easy, safe immunization strategy that was found suitable to provide complete passive protection to the neonatal mice against all four serogroups of Shigellae. It could be exploited for the development of a novel non-living vaccine against human shigellosis in near future.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Membrana Celular/imunologia , Disenteria Bacilar/prevenção & controle , Imunidade Materno-Adquirida , Vacinas contra Shigella/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Antibacterianos/sangue , Especificidade de Anticorpos , Disenteria Bacilar/imunologia , Feminino , Conteúdo Gastrointestinal/química , Imunidade Celular , Imunoglobulinas/química , Interleucina-8/imunologia , Macrófagos/imunologia , Camundongos , Fagocitose , Shigella dysenteriae/imunologia , Shigella flexneri/imunologia , Shigella sonnei/imunologia
14.
Biochim Biophys Acta ; 1820(7): 1073-80, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22543197

RESUMO

BACKGROUND: Adequate evidence mounts to the fact that several bacteria and their toxins have protective or curative roles in colorectal cancers. Thermostable direct hemolysin (TDH), produced by Vibrio parahaemolyticus, down regulates cell proliferation in colon carcinoma cell lines. TDH induces Ca2+ influx from an extracellular environment accompanied by protein kinase C phosphorylation. Activated protein kinase C inhibits the tyrosine kinase activity of epidermal growth factor receptor (EGFR), the rational target of anti-colorectal cancer therapy. METHODS: Immunoblotting analyses were performed to ascertain protein kinase C activation, EGFR status, EGFR phosphorylation and mitogen activated protein kinase (MAPK) activity. Flow cytometry analysis and ELISA reconfirmed tyrosine phosphorylation of EGFR and ERK activations, respectively. PKC-α siRNA knockdown was done to corroborate the involvement of PKC-α in the undertaken study. RESULTS: Our study showed the translocation of PKC-α from cytosol to the membrane fraction in colon carcinoma cell lines on incubation with TDH. The EGFR tyrosine kinase activity exhibited a down regulation on TDH treatment which involved PKC-α, as confirmed by siRNA knockdown. Also ERK phosphorylation occurred on PKC-α activation. CONCLUSION: TDH activated PKC-α down regulates EGFR tyrosine kinase activity by MEK dependent mechanism involving MAPK. GENERAL SIGNIFICANCE: In this study we have seen that TDH has an implication in EGFR based therapeutic approach in colorectal cancer via PKC mediated mechanism.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Enterotoxinas/farmacologia , Receptores ErbB/metabolismo , Proteínas Hemolisinas/farmacologia , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Western Blotting , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imunoprecipitação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-alfa/genética , RNA Interferente Pequeno/genética , Tirosina/metabolismo
15.
J Biol Chem ; 287(15): 12589-601, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22343631

RESUMO

We determine that OmpA of Shigella flexneri 2a is recognized by TLR2 and consequently mediates the release of proinflammatory cytokines and activates NF-κB in HEK 293 cells transfected with TLR2. We also observe that in RAW macrophages TLR2 is essential to instigate the early immune response to OmpA via NF-κB activation and secretion of cytokines and NO. Consistent with these results, TLR2 knockdown using siRNA abolishes the initiation of immune responses. Processing and presentation of OmpA depend on TLR2; MHCII presentation of the processed antigen and expression of CD80 significantly attenuated in TLR2 knockdown macrophages. The optimum production of IFN-γ by the macrophages:CD4(+) T cells co-culture depends on both TLR2 activation and antigen presentation. So, TLR2 is clearly recognized as a decisive factor in initiating host innate immune response to OmpA for the development of CD4(+) T cell adaptive response. Furthermore, we demonstrate in vivo that intranasal immunization of mice with OmpA selectively enhances the release of IFN-γ and IL-2 by CD4(+) T cells. Importantly, OmpA increases the level of IFN-γ production in Ag-primed splenocytes. The addition of neutralizing anti-IL-12p70 mAb to cell cultures results in the decreased release of OmpA-enhanced IFN-γ by Ag-primed splenocytes. Moreover, coincubation with OmpA-pretreated macrophages enhances the production of IFN-γ by OmpA-primed CD4(+) T cells, representing that OmpA may enhance IFN-γ expression in CD4(+) T cells through the induction of IL-12 production in macrophages. These results demonstrate that S. flexneri 2a OmpA may play a critical role in the development of Th1 skewed adaptive immune response.


Assuntos
Imunidade Adaptativa , Proteínas da Membrana Bacteriana Externa/imunologia , Imunidade Inata , Interleucina-12/fisiologia , Óxido Nítrico/metabolismo , Shigella flexneri/fisiologia , Receptor 2 Toll-Like/fisiologia , Animais , Apresentação de Antígeno , Ativação Enzimática , Feminino , Células HEK293 , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Interferon gama/biossíntese , Interleucina-12/metabolismo , Subunidade beta 2 de Receptor de Interleucina-12/genética , Subunidade beta 2 de Receptor de Interleucina-12/metabolismo , Ativação Linfocitária , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Proteína Quinase C-alfa/metabolismo , Transporte Proteico , Receptores de Quimiocinas/metabolismo , Shigella flexneri/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
16.
PLoS One ; 6(7): e22663, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21818362

RESUMO

BACKGROUND: In our earlier studies 34 kDa outer membrane protein (OMP) of Shigella flexneri 2a has been identified as an efficient immunostimulant. KEY RESULTS: In the present study MALDI-TOF MS analysis of the purified 34 kDa OMP of Shigella flexneri 2a shows considerable sequence homology (Identity 65%) with the OmpA of S. flexneri 2a. By using the specific primers, the gene of interest has been amplified from S. flexneri 2a (N.Y-962/92) genomic DNA, cloned in pET100/D-TOPO® vector and expressed using induction with isopropyl thiogalactoside (IPTG) for the first time. Immunogenicity and protective efficacy of the recombinant OmpA has been evaluated in an intranasally immunized murine pulmonary model. The recombinant protein induces significantly enhanced protein specific IgG and IgA Abs in both mucosal and systemic compartments and IgA secreting cells in the systemic compartment (spleen). The mice immunized with OmpA have been protected completely from systemic challenge with a lethal dose of virulent S. flexneri 2a. Immunization with the protein causes mild polymorphonuclear neutrophil infiltration in the lung, without inducing the release of large amounts of proinflammatory cytokines. CONCLUSION: These results suggest that the OmpA of S. flexneri 2a can be an efficacious mucosal immunogen inducing protective immune responses. Our findings also demonstrate that antibodies and Th1 immune response may be associated with the marked protective efficacy of immunized mice after intranasal shigellae infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Disenteria Bacilar/imunologia , Disenteria Bacilar/prevenção & controle , Imunidade/imunologia , Shigella flexneri/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas da Membrana Bacteriana Externa/química , Citocinas/metabolismo , Modelos Animais de Doenças , Disenteria Bacilar/microbiologia , Disenteria Bacilar/patologia , Humanos , Imunização , Lipossomos/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peso Molecular , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de Proteína , Análise de Sobrevida , Fatores de Tempo
17.
PLoS One ; 6(5): e20098, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21625458

RESUMO

BACKGROUND: Colon cancers are the frequent causes of cancer mortality worldwide. Recently bacterial toxins have received marked attention as promising approaches in the treatment of colon cancer. Thermostable direct hemolysin (TDH) secreted by Vibrio parahaemolyticus causes influx of extracellular calcium with the subsequent rise in intracellular calcium level in intestinal epithelial cells and it is known that calcium has antiproliferative activity against colon cancer. KEY RESULTS: In the present study it has been shown that TDH, a well-known traditional virulent factor inhibits proliferation of human colon carcinoma cells through the involvement of CaSR in its mechanism. TDH treatment does not induce DNA fragmentation, nor causes the release of lactate dehydrogenase. Therefore, apoptosis and cytotoxicity are not contributing to the TDH-mediated reduction of proliferation rate, and hence the reduction appears to be caused by decrease in cell proliferation. The elevation of E-cadherin, a cell adhesion molecule and suppression of ß-catenin, a proto-oncogene have been observed in presence of CaSR agonists whereas reverse effect has been seen in presence of CaSR antagonist as well as si-RNA in TDH treated cells. TDH also triggers a significant reduction of Cyclin-D and cdk2, two important cell cycle regulatory proteins along with an up regulation of cell cycle inhibitory protein p27(Kip1) in presence of CaSR agonists. CONCLUSION: Therefore TDH can downregulate colonic carcinoma cell proliferation and involves CaSR in its mechanism of action. The downregulation occurs mainly through the involvement of E-cadherin-ß-catenin mediated pathway and the inhibition of cell cycle regulators as well as upregulation of cell cycle inhibitors.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Caderinas/metabolismo , Neoplasias do Colo/patologia , Regulação para Baixo , Proteínas Hemolisinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Humanos , Proto-Oncogene Mas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição 4
18.
PLoS One ; 5(9)2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20927349

RESUMO

BACKGROUND: Two well-characterized proteases secreted by Vibrio cholerae O1 strains are hemagglutinin protease (HAP) and V. cholerae protease (PrtV). The hapA and prtV knock out mutant, V. cholerae O1 strain CHA6.8ΔprtV, still retains residual protease activity. We initiated this study to characterize the protease present in CHA6.8ΔprtV strain and study its role in pathogenesis in rabbit ileal loop model (RIL). METHODOLOGY/PRINCIPAL FINDINGS: We partially purified the residual protease secreted by strain CHA6.8ΔprtV from culture supernatant by anion-exchange chromatography. The major protein band in native PAGE was identified by MS peptide mapping and sequence analysis showed homology with a 59-kDa trypsin-like serine protease encoded by VC1649. The protease activity was partially inhibited by 25 mM PMSF and 10 mM EDTA and completely inhibited by EDTA and PMSF together. RIL assay with culture supernatants of strains C6709 (FA ratio 1.1+/-0.3 n = 3), CHA6.8 (FA ratio 1.08+/-0.2 n = 3), CHA6.8ΔprtV (FA ratio 1.02+/-0.2 n = 3) and partially purified serine protease from CHA6.8ΔprtV (FA ratio 1.2+/-0.3 n = 3) induced fluid accumulation and histopathological studies on rabbit ileum showed destruction of the villus structure with hemorrhage in all layers of the mucosa. RIL assay with culture supernatant of CHA6.8ΔprtVΔVC1649 strain (FA ratio 0.11+/-0.005 n = 3) and with protease incubated with PMSF and EDTA (FA ratio 0.3+/-0.05 n = 3) induced a significantly reduced FA ratio with almost complete normal villus structure. CONCLUSION: Our results show the presence of a novel 59-kDa serine protease in a ΔhapAΔprtV V. cholerae O1 strain and its role in hemorrhagic response in RIL model.


Assuntos
Cólera/patologia , Íleo/patologia , Metaloendopeptidases/deficiência , Peptídeo Hidrolases/deficiência , Serina Proteases/metabolismo , Vibrio cholerae O1/enzimologia , Sequência de Aminoácidos , Animais , Cólera/microbiologia , Modelos Animais de Doenças , Deleção de Genes , Hemorragia , Humanos , Íleo/microbiologia , Metaloendopeptidases/genética , Dados de Sequência Molecular , Peptídeo Hidrolases/genética , Coelhos , Serina Proteases/química , Serina Proteases/genética , Vibrio cholerae O1/química , Vibrio cholerae O1/genética , Vibrio cholerae O1/patogenicidade , Virulência
19.
Mol Immunol ; 47(9): 1739-46, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20347487

RESUMO

The 34 kDa major outer membrane protein (MOMP) of Shigella flexneri 2a induces combinatorial expression of TLR2 and TLR6 on peritoneal macrophages of BALB/c mice. Between the two best-characterized TLRs, to date, TLR2 and TLR4, which are chiefly responsible for recognizing majority of bacterial products, TLR2 alone participates in recognition of 34 kDa MOMP. In addition to TLRs, MOMP enhances the mRNA expression of MyD88 and TRAF6 and induces the nuclear translocation of NF-kappaB as well as activates p38 MAP kinase, suggesting the involvement of these molecules in the mechanism of action of MOMP. 34 kDa MOMP also stimulates macrophages, up regulates the surface expression of MHC-II and B7-1 and enhances the production of different cytokines (such as ILp70, TNF-alpha, Il-6) and chemokines (like MIP-1 alpha, MIP-1 beta and RANTES). The ability of the protein in the activation of macrophages, i.e. the induction of nuclear translocation of NF-kappaB and secretion of cytokines are dependent on TLR2 expression as demonstrated by the lack of response by macrophages pre-treated with inhibitory TLR2 mAb. Moreover, it has been found that MOMP induced regulation of TLR2 gene expression is dependent on NF-kappaB and p38 MAP kinase in murine macrophages for the first time. The MOMP induced cytokines and chemokines profile reflect that the protein has the ability to translate innate towards type-1 adaptive response. In conclusion MOMP recognizes by and activates macrophages which may be an initiating event in the antibacterial host response.


Assuntos
Proteínas da Membrana Bacteriana Externa/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Núcleo Celular/metabolismo , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Immunoblotting , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Peso Molecular , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Shigella flexneri/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 2 Toll-Like/genética
20.
Biochim Biophys Acta ; 1800(6): 591-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20338221

RESUMO

BACKGROUND: IP(3)-mediated calcium mobilization from intracellular stores activates and translocates PKC-alpha from cytosol to membrane fraction in response to STa in COLO-205 cell line. The present study was undertaken to determine the involvement of cytoskeleton proteins in translocation of PKC-alpha to membrane from cytosol in the Escherichiacoli STa-mediated signaling cascade in a human colonic carcinoma cell line COLO-205. METHODS: Western blots and consequent densitometric analysis were used to assess time-dependent redistribution of cytoskeletal proteins. This redistribution was further confirmed by using confocal microscopy. Pharmacological reagents were applied to colonic carcinoma cells to disrupt the microfilaments (cytochalasin D) and microtubules (nocodazole). RESULTS: STa treatment in COLO-205 cells showed dynamic redistribution and an increase in actin content in the Triton-insoluble fraction, which corresponds to an increase in polymerization within 1min. Moreover, pharmacological disruption of actin-based cytoskeleton greatly disturbed PKC-alpha translocation to the membrane. CONCLUSIONS: These results suggested that the organization of actin cytoskeleton is rapidly rearranged following E. coli STa treatment and the integrity of the actin cytoskeleton played a crucial role in PKC-alpha movement in colonic cells. Depolymerization of tubulin had no effect on the ability of the kinase to be translocated to the membrane. GENERAL SIGNIFICANCE: In the present study, we have shown for the first time that in colonic carcinoma cells, STa-mediated rapid changes of actin cytoskeleton arrangement might be involved in the translocation of PKC-alpha to membrane.


Assuntos
Toxinas Bacterianas/farmacologia , Proteínas do Citoesqueleto/metabolismo , Enterotoxinas/farmacologia , Escherichia coli/metabolismo , Transdução de Sinais , Western Blotting , Proteínas de Escherichia coli , Imunofluorescência , Proteína Quinase C-alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA