Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Vaccines ; 8(1): 161, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880298

RESUMO

With the rapid emergence of variants of concern (VOC), the efficacy of currently licensed vaccines has reduced drastically. VOC mutations largely occur in the S1 subunit of Spike. The S2 subunit of SARS-CoV-2 is conserved and thus more likely to elicit broadly reactive immune responses that could improve protection. However, the contribution of the S2 subunit in improving the overall efficacy of vaccines remains unclear. Therefore, we designed, and evaluated the immunogenicity and protective potential of a stabilized SARS-CoV-2 Receptor Binding Domain (RBD) fused to a stabilized S2. Immunogens were expressed as soluble proteins with approximately fivefold higher purified yield than the Spike ectodomain and formulated along with Squalene-in-water emulsion (SWE) adjuvant. Immunization with S2 alone failed to elicit a neutralizing immune response, but significantly reduced lung viral titers in mice challenged with the heterologous Beta variant. In hamsters, SWE-formulated RS2 (a genetic fusion of stabilized RBD with S2) showed enhanced immunogenicity and efficacy relative to corresponding RBD and Spike formulations. Despite being based on the ancestral Wuhan strain of SARS-CoV-2, RS2 elicited broad neutralization, including against Omicron variants (BA.1, BA.5 and BF.7), and the clade 1a WIV-1 and SARS-CoV-1 strains. RS2 elicited sera showed enhanced competition with both S2 directed and RBD Class 4 directed broadly neutralizing antibodies, relative to RBD and Spike elicited sera. When lyophilized, RS2 retained antigenicity and immunogenicity even after incubation at 37 °C for a month. The data collectively suggest that the RS2 immunogen is a promising modality to combat SARS-CoV-2 variants.

2.
J Virol ; 97(11): e0092223, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37861334

RESUMO

IMPORTANCE: The Omicron subvariants have substantially evaded host-neutralizing antibodies and adopted an endosomal route of entry. The virus has acquired several mutations in the receptor binding domain and N-terminal domain of S1 subunit, but remarkably, also incorporated mutations in S2 which are fixed in Omicron sub-lineage. Here, we found that the mutations in the S2 subunit affect the structural and biological properties such as neutralization escape, entry route, fusogenicity, and protease requirement. In vivo, these mutations may have significant roles in tropism and replication. A detailed understanding of the effects of S2 mutations on Spike function, immune evasion, and viral entry would inform the vaccine design, as well as therapeutic interventions aiming to block the essential proteases for virus entry. Thus, our study has identified the crucial role of S2 mutations in stabilizing the Omicron spike and modulating neutralization resistance to antibodies targeting the S1 subunit.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Endopeptidases , Conformação Molecular , Mutação , Peptídeo Hidrolases , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
3.
PLoS Pathog ; 19(5): e1011358, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126530

RESUMO

Rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) poses enormous challenge in the development of broad-spectrum antivirals that are effective against the existing and emerging viral strains. Virus entry through endocytosis represents an attractive target for drug development, as inhibition of this early infection step should block downstream infection processes, and potentially inhibit viruses sharing the same entry route. In this study, we report the identification of 1,3-diphenylurea (DPU) derivatives (DPUDs) as a new class of endocytosis inhibitors, which broadly restricted entry and replication of several SARS-CoV-2 and IAV strains. Importantly, the DPUDs did not induce any significant cytotoxicity at concentrations effective against the viral infections. Examining the uptake of cargoes specific to different endocytic pathways, we found that DPUDs majorly affected clathrin-mediated endocytosis, which both SARS-CoV-2 and IAV utilize for cellular entry. In the DPUD-treated cells, although virus binding on the cell surface was unaffected, internalization of both the viruses was drastically reduced. Since compounds similar to the DPUDs were previously reported to transport anions including chloride (Cl-) across lipid membrane and since intracellular Cl- concentration plays a critical role in regulating vesicular trafficking, we hypothesized that the observed defect in endocytosis by the DPUDs could be due to altered Cl- gradient across the cell membrane. Using in vitro assays we demonstrated that the DPUDs transported Cl- into the cell and led to intracellular Cl- accumulation, which possibly affected the endocytic machinery by perturbing intracellular Cl- homeostasis. Finally, we tested the DPUDs in mice challenged with IAV and mouse-adapted SARS-CoV-2 (MA 10). Treatment of the infected mice with the DPUDs led to remarkable body weight recovery, improved survival and significantly reduced lung viral load, highlighting their potential for development as broad-spectrum antivirals.


Assuntos
COVID-19 , Vírus da Influenza A , Animais , Camundongos , SARS-CoV-2 , Vírus da Influenza A/fisiologia , Endocitose , Internalização do Vírus , Antivirais/farmacologia , Antivirais/química
4.
Indian J Gastroenterol ; 40(6): 636-640, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34528180

RESUMO

Tubercular involvement of pancreas is rare. It presents as a focal lesion of pancreas on cross sectional imaging. Endosonography with fine-needle aspiration (EUS-FNA) is crucial for a timely presurgical diagnosis. A retrospective review was conducted on 117 cases of pancreatic focal mass undergoing EUS-FNA at our institution over a period of 3 years, and 5 cases with pancreatic tuberculosis (TB) were detected. The clinical presentation varied from obstructive jaundice, recurrent acute pancreatitis to incidentaloma of pancreas. All patients received antitubercular therapy and were followed up for at least 6 months. In conclusion, pancreatic tuberculosis is a differential of a pancreatic focal lesion and EUS-FNA is the method for diagnosis of this condition that may obviate surgical exploration.


Assuntos
Neoplasias Pancreáticas , Pancreatite , Tuberculose , Doença Aguda , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Endossonografia/métodos , Humanos , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Pancreatite/diagnóstico , Estudos Retrospectivos , Tuberculose/diagnóstico por imagem , Tuberculose/patologia
5.
ACS Infect Dis ; 7(8): 2546-2564, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260218

RESUMO

The receptor binding domain (RBD) of SARS-CoV-2 is the primary target of neutralizing antibodies. We designed a trimeric, highly thermotolerant glycan engineered RBD by fusion to a heterologous, poorly immunogenic disulfide linked trimerization domain derived from cartilage matrix protein. The protein expressed at a yield of ∼80-100 mg/L in transiently transfected Expi293 cells, as well as CHO and HEK293 stable cell lines and formed homogeneous disulfide-linked trimers. When lyophilized, these possessed remarkable functional stability to transient thermal stress of up to 100 °C and were stable to long-term storage of over 4 weeks at 37 °C unlike an alternative RBD-trimer with a different trimerization domain. Two intramuscular immunizations with a human-compatible SWE adjuvanted formulation elicited antibodies with pseudoviral neutralizing titers in guinea pigs and mice that were 25-250 fold higher than corresponding values in human convalescent sera. Against the beta (B.1.351) variant of concern (VOC), pseudoviral neutralization titers for RBD trimer were ∼3-fold lower than against wildtype B.1 virus. RBD was also displayed on a designed ferritin-like Msdps2 nanoparticle. This showed decreased yield and immunogenicity relative to trimeric RBD. Replicative virus neutralization assays using mouse sera demonstrated that antibodies induced by the trimers neutralized all four VOC to date, namely B.1.1.7, B.1.351, P.1, and B.1.617.2 without significant differences. Trimeric RBD immunized hamsters were protected from viral challenge. The excellent immunogenicity, thermotolerance, and high yield of these immunogens suggest that they are a promising modality to combat COVID-19, including all SARS-CoV-2 VOC to date.


Assuntos
COVID-19 , Termotolerância , Animais , Anticorpos Antivirais , COVID-19/terapia , Cobaias , Células HEK293 , Humanos , Imunização Passiva , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
6.
Metab Brain Dis ; 30(5): 1309-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26188955

RESUMO

Both ischemic stroke (IS) and hemorrhagic stroke (HS) are reported to occur due to thrombosis on the arteries of the brain. As diabetes mellitus is a risk factor for strokes and insulin is reported to prevent thrombosis, the role of insulin in IS and HS was investigated. Forty eight stroke victims (IS = 22, HS = 26) and equal number of aged and sex matched normal volunteers participated in the study. Nitric oxide was determined by methemoglobin method. Insulin and Dermcidin isoform-2 (DCN2) level was determined by ELISA by using insulin and dermcidin antibody. Insulin binding to the platelet membrane was analyzed by scat chard plot. Treatment of normal platelet rich plasma (10(8)platelets/ml) with 15µUnits insulin/ml produced 1.41 nmol NO. The PRP from the IS and HS victims produced 0.38 nmol NO and 0.08 nmol NO respectively. Pretreatment of PRP from IS or HS subjects with 15 µM aspirin followed by 15µUnits of insulin/ml resensitized the platelets to the inhibitory effect of insulin. Mice hepatocytes treated with 0.14 µM DCN2 abolished the glucose induced insulin synthesis by NO that can be reversed by using 15 µM aspirin. It can be concluded that presence of DCN2 in stroke causes a condition similar to type I diabetes and nullified the effect of insulin in the inhibition of platelet aggregation in both IS and HS. The effect was reversed by 15 µM aspirin.


Assuntos
Insulina/biossíntese , Insulina/sangue , Agregação Plaquetária/fisiologia , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA