Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Dev Cell ; 58(21): 2359-2375.e8, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37647896

RESUMO

Brown adipocytes (BAs) represent a specialized cell type that is able to uncouple nutrient catabolism from ATP generation to dissipate energy as heat. In humans, the brown fat tissue is composed of discrete depots found throughout the neck and trunk region. BAs originate from a precursor common to skeletal muscle, but their developmental trajectory remains poorly understood. Here, we used single-cell RNA sequencing to characterize the development of interscapular brown fat in mice. Our analysis identified a transient stage of BA differentiation characterized by the expression of the transcription factor GATA6. We show that recapitulating the sequence of signaling cues identified in mice can lead to efficient differentiation of BAs in vitro from human pluripotent stem cells. These precursors can in turn be efficiently converted into functional BAs that can respond to signals mimicking adrenergic stimuli by increasing their metabolism, resulting in heat production.


Assuntos
Tecido Adiposo Marrom , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Diferenciação Celular/fisiologia , Transdução de Sinais , Adipócitos Marrons/metabolismo , Termogênese/fisiologia
2.
Cell Rep ; 40(7): 111219, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977485

RESUMO

Embryonic stem cells (ESCs) can adopt lineage-specific gene-expression programs by stepwise exposure to defined factors, resulting in the generation of functional cell types. Bulk and single-cell-based assays were employed to catalog gene expression, histone modifications, chromatin conformation, and accessibility transitions in ESC populations and individual cells acquiring a presomitic mesoderm fate and undergoing further specification toward myogenic and neurogenic lineages. These assays identified cis-regulatory regions and transcription factors presiding over gene-expression programs occurring at defined ESC transitions and revealed the presence of heterogeneous cell populations within discrete ESC developmental stages. The datasets were employed to identify previously unappreciated genomic elements directing the initial activation of Pax7 and myogenic and neurogenic gene-expression programs. This study provides a resource for the discovery of genomic and transcriptional features of pluripotent, mesoderm-induced ESCs and ESC-derived cell lineages.


Assuntos
Células-Tronco Embrionárias , Transcriptoma , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Sequências Reguladoras de Ácido Nucleico
3.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260377

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating genetic disease leading to degeneration of skeletal muscles and premature death. How dystrophin absence leads to muscle wasting remains unclear. Here, we describe an optimized protocol to differentiate human induced pluripotent stem cells (iPSC) to a late myogenic stage. This allows us to recapitulate classical DMD phenotypes (mislocalization of proteins of the dystrophin-associated glycoprotein complex, increased fusion, myofiber branching, force contraction defects, and calcium hyperactivation) in isogenic DMD-mutant iPSC lines in vitro. Treatment of the myogenic cultures with prednisolone (the standard of care for DMD) can dramatically rescue force contraction, fusion, and branching defects in DMD iPSC lines. This argues that prednisolone acts directly on myofibers, challenging the largely prevalent view that its beneficial effects are caused by antiinflammatory properties. Our work introduces a human in vitro model to study the onset of DMD pathology and test novel therapeutic approaches.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Prednisolona/farmacologia , Fenômenos Biomecânicos , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Distrofina/deficiência , Distrofina/metabolismo , Glicoproteínas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/genética , Mutação/genética , Optogenética , Fenótipo
4.
Sci Rep ; 9(1): 11893, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417144

RESUMO

The cardiac action potential (AP) is vital for understanding healthy and diseased cardiac biology and drug safety testing. However, techniques for high throughput cardiac AP measurements have been limited. Here, we introduce a novel technique for reliably increasing the coupling of cardiomyocyte syncytium to planar multiwell microelectrode arrays, resulting in a stable, label-free local extracellular action potential (LEAP). We characterized the reliability and stability of LEAP, its relationship to the field potential, and its efficacy for quantifying AP morphology of human induced pluripotent stem cell derived and primary rodent cardiomyocytes. Rise time, action potential duration, beat period, and triangulation were used to quantify compound responses and AP morphology changes induced by genetic modification. LEAP is the first high throughput, non-invasive, label-free, stable method to capture AP morphology from an intact cardiomyocyte syncytium. LEAP can accelerate our understanding of stem cell models, while improving the automation and accuracy of drug testing.


Assuntos
Potenciais de Ação/fisiologia , Coração/fisiologia , Microeletrodos , Animais , Animais Recém-Nascidos , Eletroporação , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Processamento de Sinais Assistido por Computador , Fatores de Tempo
5.
Dev Cell ; 48(3): 396-405.e3, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30661985

RESUMO

The heterochronic genes Lin28a/b and let-7 regulate invertebrate development, but their functions in patterning the mammalian body plan remain unexplored. Here, we describe how Lin28/let-7 influence caudal vertebrae number during body axis formation. We found that FoxD1-driven overexpression of Lin28a strikingly increased caudal vertebrae number and tail bud cell proliferation, whereas its knockout did the opposite. Lin28a overexpression downregulated the neural marker Sox2, causing a pro-mesodermal phenotype with a decreased proportion of neural tissue relative to nascent mesoderm. Manipulating Lin28a and let-7 led to opposite effects, and manipulating Lin28a's paralog, LIN28B caused similar yet distinct phenotypes. These findings suggest that Lin28/let-7 play a role in the regulation of tail length through heterochrony of the body plan. We propose that the Lin28/let-7 pathway controls the pool of caudal progenitors during tail development, promoting their self-renewal and balancing neural versus mesodermal cell fate decisions.


Assuntos
MicroRNAs/metabolismo , Morfogênese/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Mamíferos/metabolismo , Camundongos Transgênicos , MicroRNAs/genética , Proteínas de Ligação a RNA/genética
6.
Curr Top Dev Biol ; 129: 123-142, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29801528

RESUMO

The skeletal muscle lineage derives from the embryonic paraxial mesoderm (PM) which also gives rise to the axial skeleton, the dermis of the back, brown fat, meninges, and endothelial cells. Direct conversion was pioneered in skeletal muscle with overexpression of the transcription factor MyoD which can convert fibroblasts to a muscle fate. In contrast, directed differentiation of skeletal muscle from pluripotent cells (PC) in vitro has proven to be very difficult compared to other lineages and has only been achieved recently. Experimental strategies recapitulating myogenesis in vitro from mouse and human PC (ES/iPS) have now been reported and all rely on early activation of Wnt signaling at the epiblast stage. This leads to induction of neuromesodermal progenitors that can subsequently be induced to a PM fate and to skeletal muscle. These protocols can efficiently produce fetal muscle fibers and immature satellite cells. These new in vitro systems now open the possibility to better understand human myogenesis and to develop in vitro disease models as well as cell therapy approaches.


Assuntos
Desenvolvimento Muscular , Animais , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Humanos , Mesoderma/citologia , Mesoderma/embriologia , Modelos Biológicos , Desenvolvimento Muscular/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
7.
Development ; 145(6)2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29555813

RESUMO

Body skeletal muscles derive from the paraxial mesoderm, which forms in the posterior region of the embryo. Using microarrays, we characterize novel mouse presomitic mesoderm (PSM) markers and show that, unlike the abrupt transcriptome reorganization of the PSM, neural tube differentiation is accompanied by progressive transcriptome changes. The early paraxial mesoderm differentiation stages can be efficiently recapitulated in vitro using mouse and human pluripotent stem cells. While Wnt activation alone can induce posterior PSM markers, acquisition of a committed PSM fate and efficient differentiation into anterior PSM Pax3+ identity further requires BMP inhibition to prevent progenitors from drifting to a lateral plate mesoderm fate. When transplanted into injured adult muscle, these precursors generated large numbers of immature muscle fibers. Furthermore, exposing these mouse PSM-like cells to a brief FGF inhibition step followed by culture in horse serum-containing medium allows efficient recapitulation of the myogenic program to generate myotubes and associated Pax7+ cells. This protocol results in improved in vitro differentiation and maturation of mouse muscle fibers over serum-free protocols and enables the study of myogenic cell fusion and satellite cell differentiation.


Assuntos
Diferenciação Celular/genética , Mesoderma/citologia , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Células-Tronco Pluripotentes/citologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Imuno-Histoquímica , Imunofenotipagem , Hibridização In Situ , Técnicas In Vitro , Mesoderma/metabolismo , Mesoderma/fisiologia , Camundongos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Análise Serial de Tecidos , Via de Sinalização Wnt/genética
8.
Development ; 144(12): 2104-2122, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28634270

RESUMO

Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.


Assuntos
Desenvolvimento Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Animais , Diferenciação Celular , Reprogramação Celular , Humanos , Mesoderma/citologia , Mesoderma/embriologia , Camundongos , Modelos Biológicos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Somitos/citologia , Somitos/embriologia
9.
Dev Cell ; 40(4): 342-353.e10, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28245921

RESUMO

Mammalian embryos transiently exhibit aerobic glycolysis (Warburg effect), a metabolic adaptation also observed in cancer cells. The role of this particular type of metabolism during vertebrate organogenesis is currently unknown. Here, we provide evidence for spatiotemporal regulation of glycolysis in the posterior region of mouse and chicken embryos. We show that a posterior glycolytic gradient is established in response to graded transcription of glycolytic enzymes downstream of fibroblast growth factor (FGF) signaling. We demonstrate that glycolysis controls posterior elongation of the embryonic axis by regulating cell motility in the presomitic mesoderm and by controlling specification of the paraxial mesoderm fate in the tail bud. Our results suggest that glycolysis in the tail bud coordinates Wnt and FGF signaling to promote elongation of the embryonic axis.


Assuntos
Âmnio/embriologia , Âmnio/metabolismo , Padronização Corporal , Fatores de Crescimento de Fibroblastos/metabolismo , Glicólise , Vertebrados/embriologia , Vertebrados/metabolismo , Via de Sinalização Wnt , Animais , Padronização Corporal/genética , Movimento Celular , Embrião de Galinha , Espaço Extracelular/metabolismo , Glicólise/genética , Concentração de Íons de Hidrogênio , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Fenótipo , Cauda/embriologia , Transcrição Gênica , Vertebrados/genética , Via de Sinalização Wnt/genética
10.
Development ; 144(4): 664-676, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087631

RESUMO

Vertebrate segmentation is characterized by the periodic formation of epithelial somites from the mesenchymal presomitic mesoderm (PSM). How the rhythmic signaling pulse delivered by the segmentation clock is translated into the periodic morphogenesis of somites remains poorly understood. Here, we focused on the role of paraxial protocadherin (PAPC/Pcdh8) in this process. We showed that in chicken and mouse embryos, PAPC expression is tightly regulated by the clock and wavefront system in the posterior PSM. We observed that PAPC exhibits a striking complementary pattern to N-cadherin (CDH2), marking the interface of the future somite boundary in the anterior PSM. Gain and loss of function of PAPC in chicken embryos disrupted somite segmentation by altering the CDH2-dependent epithelialization of PSM cells. Our data suggest that clathrin-mediated endocytosis is increased in PAPC-expressing cells, subsequently affecting CDH2 internalization in the anterior compartment of the future somite. This in turn generates a differential adhesion interface, allowing formation of the acellular fissure that defines the somite boundary. Thus, periodic expression of PAPC in the anterior PSM triggers rhythmic endocytosis of CDH2, allowing for segmental de-adhesion and individualization of somites.


Assuntos
Caderinas/metabolismo , Endocitose , Morfogênese , Somitos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/fisiologia , Adesão Celular , Membrana Celular/metabolismo , Embrião de Galinha , Clatrina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Domínios Proteicos , Protocaderinas , Receptores Notch/metabolismo , Transdução de Sinais
11.
Nat Protoc ; 11(10): 1833-50, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27583644

RESUMO

Progress toward finding a cure for muscle diseases has been slow because of the absence of relevant cellular models and the lack of a reliable source of muscle progenitors for biomedical investigation. Here we report an optimized serum-free differentiation protocol to efficiently produce striated, millimeter-long muscle fibers together with satellite-like cells from human pluripotent stem cells (hPSCs) in vitro. By mimicking key signaling events leading to muscle formation in the embryo, in particular the dual modulation of Wnt and bone morphogenetic protein (BMP) pathway signaling, this directed differentiation protocol avoids the requirement for genetic modifications or cell sorting. Robust myogenesis can be achieved in vitro within 1 month by personnel experienced in hPSC culture. The differentiating culture can be subcultured to produce large amounts of myogenic progenitors amenable to numerous downstream applications. Beyond the study of myogenesis, this differentiation method offers an attractive platform for the development of relevant in vitro models of muscle dystrophies and drug screening strategies, as well as providing a source of cells for tissue engineering and cell therapy approaches.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Fibras Musculares Esqueléticas/citologia , Células-Tronco Pluripotentes/citologia , Células Satélites de Músculo Esquelético/citologia , Linhagem Celular , Humanos , Desenvolvimento Muscular
12.
Nat Biotechnol ; 33(9): 962-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26237517

RESUMO

During embryonic development, skeletal muscles arise from somites, which derive from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We show that primary and secondary skeletal myogenesis can be recapitulated in vitro from the PSM-like cells, providing an efficient, serum-free protocol for the generation of striated, contractile fibers from mouse and human pluripotent cells. The mouse ES cells also differentiate into Pax7(+) cells with satellite cell characteristics, including the ability to form dystrophin(+) fibers when grafted into muscles of dystrophin-deficient mdx mice, a model of Duchenne muscular dystrophy (DMD). Fibers derived from ES cells of mdx mice exhibit an abnormal branched phenotype resembling that described in vivo, thus providing an attractive model to study the origin of the pathological defects associated with DMD.


Assuntos
Diferenciação Celular , Modelos Animais de Doenças , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular de Duchenne/patologia , Células-Tronco Pluripotentes/patologia , Animais , Células Cultivadas , Camundongos , Camundongos Transgênicos
13.
Dev Cell ; 10(3): 355-66, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16516838

RESUMO

The segmented body plan of vertebrate embryos arises through segmentation of the paraxial mesoderm to form somites. The tight temporal and spatial control underlying this process of somitogenesis is regulated by the segmentation clock and the FGF signaling wavefront. Here, we report the cyclic mRNA expression of Snail 1 and Snail 2 in the mouse and chick presomitic mesoderm (PSM), respectively. Whereas Snail genes' oscillations are independent of NOTCH signaling, we show that they require WNT and FGF signaling. Overexpressing Snail 2 in the chick embryo prevents cyclic Lfng and Meso 1 expression in the PSM and disrupts somite formation. Moreover, cells mis-expressing Snail 2 fail to express Paraxis, remain mesenchymal, and are thereby inhibited from undergoing the epithelialization event that culminates in the formation of the epithelial somite. Thus, Snail genes define a class of cyclic genes that coordinate segmentation and PSM morphogenesis.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/fisiologia , Morfogênese , Isoformas de Proteínas , Fatores de Transcrição , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Proteína Axina , Embrião de Galinha , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Epitélio/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail , Somitos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
14.
Proc Natl Acad Sci U S A ; 102(32): 11343-8, 2005 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16055560

RESUMO

The regular spacing of somites during vertebrate embryogenesis involves a dynamic gradient of FGF signaling that controls the timing of maturation of cells in the presomitic mesoderm (PSM). How the FGF signal is transduced by PSM cells is unclear. Here, we first show that the FGF gradient is translated into graded activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway along the PSM in the chicken embryo. Using in ovo electroporation of PSM cells, we demonstrate that constitutive activation of ERK signaling in the PSM blocks segmentation by preventing maturation of PSM cells, thus phenocopying the overexpression of FGF8. Conversely, inhibition of ERK phosphorylation mimics a loss of function of FGF signaling in the PSM. Interestingly, video microscopy analysis of cell movements shows that ERK regulates the motility of PSM cells, suggesting that the decrease of cell movements along the PSM enables mesenchymal PSM cells to undergo proper segmentation. Together, our data demonstrate that ERK is the effector of the gradient of FGF in the PSM that controls the segmentation process.


Assuntos
Desenvolvimento Embrionário/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Mesoderma/fisiologia , Transdução de Sinais/fisiologia , Somitos/metabolismo , Animais , Western Blotting , Movimento Celular/fisiologia , Embrião de Galinha , Eletroporação , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Microscopia de Vídeo , Microesferas , Fosforilação , Somitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA