Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(11): 8867-8875, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688678

RESUMO

BACKGROUND: Rice crop may experience a significant reduction in yield-up to 50%-due to two occurrences during drought stress: unsuccessful peduncle elongation in panicle exertion and ineffective grain filling. The comprehension of mechanisms that promote drought tolerance during these growth phases is crucial for the production of rice that can withstand drought conditions, thus averting a decrease in crop yield. METHODS AND RESULTS: The expression of two xyloglucan endo transhydrolase/glucosylase genes (OsXTH 5 and 19) in peduncle tissue and a sucrose transporter gene (OsSUT1) in flag leaf sheath were assessed. An experiment was carried out in a factorial arrangement based on completely randomized design in which, factor A was two rice cultivars (Vandana as tolerant and Tarom mahalli as local susceptible to drought) and factor B was five drought stress treatments (full irrigation, drought stress duration in 72 and 96 h, re-watering after 120 and 192 h). Results showed that expression of OsXTH19 and OsXTH5 genes were upregulated in both Vandana and Tarom mahalli cultivars due to stress treatments. OsXTH19 expression was found to decrease while OsXTH5 expression increased during re-watering treatments. It is likely that the persistence of peduncle growth in the drought-tolerant Vandana cultivar can be attributed to the presence of OsXTH19 under drought conditions and OsXTH5 after re-watering. The expression of OsSUT1 in flag leaf sheath of Vandana in re-watering treatments was reached 8-60-fold re-watering. CONCLUSIONS: Peduncle elongation was attributed to two XTH genes under drought stress condition. Panicle exertion may be promoted by sustaining peduncle growth despite drought stress. Consequently, this may led to reduce in non fertile florets and decrease in grain yield by 50%. As grain filling depend to expression of OsSUT1 in flag leaf sheath under drought stress, to improve rice cultivars under aerobic production system and drought stress, it is advised to apply these findings in rice breeding programs.


Assuntos
Oryza , Oryza/metabolismo , Secas , Melhoramento Vegetal , Folhas de Planta/genética , Água/metabolismo , Grão Comestível
3.
Biochem Genet ; 54(2): 177-93, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26762294

RESUMO

Analysis of the genetic diversity and population structure of crops is very important for use in breeding programs and for genetic resources conservation. We analyzed the genetic diversity and population structure of 47 rice genotypes from diverse origins using amplified fragment length polymorphism (AFLP) markers and morphological characters. The 47 genotypes, which were composed of four populations: Iranian native varieties, Iranian improved varieties, International Rice Research Institute (IRRI) rice varieties, and world rice collections, were analyzed using ten primer combinations. A total of 221 scorable bands were produced with an average of 22.1 alleles per pair of primers, of which 120 (54.30%) were polymorphic. The polymorphism information content (PIC) values varied from 0.32 to 0.41 with an average of 0.35. The high percentage of polymorphic bands (%PB) was found to be 64.71 and the resolving power (R p) collections were 63.36. UPGMA clustering based on numerical data from AFLP patterns clustered all 47 genotypes into three large groups. The genetic similarity between individuals ranged from 0.54 to 0.94 with an average of 0.74. Population genetic tree showed that Iranian native cultivars formed far distant cluster from the other populations, which may indicate that these varieties had minimal genetic change over time. Analysis of molecular variance (AMOVA) revealed that the largest proportion of the variation (84%) to be within populations showing the inbreeding nature of rice. Therefore, Iranian native varieties (landraces) may have unique genes, which can be used for future breeding programs and there is a need to conserve this unique diversity. Furthermore, crossing of Iranian genotypes with the genetically distant genotypes in the other three populations may result in useful combinations, which can be used as varieties and/or lines for future rice breeding programs.


Assuntos
Oryza/genética , Melhoramento Vegetal , Polimorfismo Genético , Alelos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Análise de Variância , Genótipo , Irã (Geográfico) , Fenótipo , Filogenia , Banco de Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA