Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Strength Cond Res ; 38(2): 274-282, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884006

RESUMO

ABSTRACT: Horsley, BJ, Tofari, PJ, Halson, SL, Kemp, JG, Chalkley, D, Cole, MH, Johnston, RD, and Cormack, SJ. Validity and reliability of thoracic-mounted inertial measurement units to derive gait characteristics during running. J Strength Cond Res 38(2): 274-282, 2024-Inertial measurement units (IMUs) attached to the tibia or lumbar spine can be used to analyze running gait but, with team-sports, are often contained in global navigation satellite system (GNSS) units worn on the thoracic spine. We assessed the validity and reliability of thoracic-mounted IMUs to derive gait characteristics, including peak vertical ground reaction force (vGRF peak ) and vertical stiffness (K vert ). Sixteen recreationally active subjects performed 40 m run throughs at 3-4, 5-6, and 7-8 m·s -1 . Inertial measurement units were attached to the tibia, lumbar, and thoracic spine, whereas 2 GNSS units were also worn on the thoracic spine. Initial contact (IC) from a validated algorithm was evaluated with F1 score and agreement (mean difference ± SD ) of gait data with the tibia and lumbar spine using nonparametric limits of agreement (LoA). Test-retest error {coefficient of variation, CV (95% confidence interval [CI])} established reliability. Thoracic IMUs detected a nearly perfect proportion (F1 ≥ 0.95) of IC events compared with tibia and lumbar sites. Step length had the strongest agreement (0 ± 0.04 m) at 3-4 m·s -1 , whereas contact time improved from 3 to 4 (-0.028 ± 0.018 second) to 7-8 m·s -1 (-0.004 ± 0.013 second). All values for K vert fell within the LoA at 7-8 m·s -1 . Test-retest error was ≤12.8% for all gait characteristics obtained from GNSS units, where K vert was most reliable at 3-4 m·s -1 (6.8% [5.2, 9.6]) and vGRF peak at 7-8 m·s -1 (3.7% [2.5, 5.2]). The thoracic-spine site is suitable to derive gait characteristics, including K vert , from IMUs within GNSS units, eliminating the need for additional sensors to analyze running gait.


Assuntos
Marcha , Corrida , Humanos , Reprodutibilidade dos Testes , Algoritmos , Esportes de Equipe , Fenômenos Biomecânicos
2.
J Strength Cond Res ; 37(1): 234-238, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515612

RESUMO

ABSTRACT: Weakley, J, McCosker, C, Chalkley, D, Johnston, R, Munteanu, G, and Morrison, M. Comparison of sprint timing methods on performance, and displacement and velocity at timing initiation. J Strength Cond Res 37(1): 234-238, 2023-Sprint testing is commonly used to assess speed and acceleration in athletes. However, vastly different outcomes have been reported throughout the literature. These differences are likely due to the sprint timing method rather than differences in athlete ability. Consequently, this study compared different sprint starting methods on sprint time and quantified the velocity and displacement of the athlete at the moment timing is initiated. Starting in a staggered 2-point stance, 12 team sport athletes were required to accelerate 10 meters for 10 repetitions. During each repetition, 5 independent timing methods were triggered. The methods were (a) triggering a Move sensor; (b) starting 50 cm behind the line; (c) triggering a front-foot switch; (d) triggering a rear-foot switch; and (e) starting with the front foot on the line. Timing for each method was initiated at different points during the acceleration phase, and the displacement and velocity of the centroid of the pelvis at the point of timing initiation was assessed under high-speed motion capture. The Move sensor had the smallest displacement and lowest velocity at the point of timing initiation, whereas the front-foot trigger demonstrated the largest displacement and highest velocities. Trivial to very large effect size differences were observed between all methods in displacement and velocity at the point of timing initiation. Furthermore, small to very large differences in time to 5 m were found. These findings emphasize that sprint outcomes should not be compared, unless starting methods are identical. In addition, to detect real change in performance, consistent standardized protocols should be implemented.


Assuntos
Desempenho Atlético , Corrida , Humanos , Aceleração , Atletas , Extremidade Inferior
3.
J Neuroeng Rehabil ; 19(1): 72, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842699

RESUMO

BACKGROUND: People with Parkinson's disease (PD) are at a high risk of falls, with ~ 60% experiencing a fall each year. Greater mediolateral head and pelvis motion during gait are known to increase the risk of falling in PD, however the ability to modify these aspects of gait has not been examined. Thus, this study aimed to examine whether mediolateral trunk, head and pelvis motion during walking could be successfully decreased in people with PD using real-time biofeedback. METHODS: Participants were provided with real-time biofeedback regarding their mediolateral trunk lean via a visual projection whilst walking along an 8-m indoor walkway. Using the feedback provided, they were asked to reduce the magnitude of their mediolateral trunk lean. Gait was recorded for four conditions (i) Baseline, (ii) Intervention, (iii) immediately Post-Intervention, and (iv) 1-week Follow-Up. Biomechanical variables associated with falls risk were compared between conditions, including normalised mediolateral motion, gait velocity and stride length. RESULTS: A reduction in mediolateral trunk lean, step length and gait velocity from Baseline to the Intervention and Post-intervention conditions was observed. Contrary to this, increased normalised ML pelvis and trunk motion was observed between the Baseline and Intervention conditions, but returned to Baseline levels in the Post-Intervention condition. CONCLUSIONS: Results from the current study suggest that real-time visual biofeedback may be effective at modifying specific gait characteristics that are associated with falls in PD. Further research is required to better understand the influence of this intervention approach on falls incidence. Trial registration Australian New Zealand Clinical Trials Registry ACTRN12620000994987. Registered 10 June 2020 - Retrospectively registered, https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=380324.


Assuntos
Doença de Parkinson , Acidentes por Quedas/prevenção & controle , Austrália , Biorretroalimentação Psicológica , Fenômenos Biomecânicos , Marcha , Humanos , Doença de Parkinson/complicações , Projetos Piloto , Caminhada
4.
Aging Clin Exp Res ; 34(6): 1349-1356, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35020171

RESUMO

BACKGROUND: Metronome cueing has been shown to reduce gait variability and thereby potentially reduce falls risk in individuals with Parkinson's disease. It is unclear however, if metronome cueing has a similar effect in healthy older adults with a history of falls. AIM: To investigate whether a traditional and/or an adaptive metronome, based on an individual's gait pattern, were effective in reducing gait variability in older adults with a history of falls. METHODS: Twenty older adults (15 women, 71 ± 4.9 years) with a history of falls were included in this cross-over study. Participants received two types of cueing (adaptive and traditional metronome) 1 week apart. The variability of the participants' stride time, stride length, walking speed and duration of double leg support were recorded during three walking conditions (baseline, during feedback and post-feedback gait). Repeated-measures ANOVA was used to assess the possible effects of the two cueing strategies on gait variables. RESULTS: Compared with the baseline condition, participants had significantly increased stride time variability during feedback (F (2) = 9.83, p < 0.001) and decreased double leg support time variability post-feedback (F (2) 3.69, p = 0.034). Increased stride time variability was observed with the adaptive metronome in comparison to the traditional metronome. CONCLUSION: Metronome cueing strategies may reduce double leg support variability in older adults with a history of falls but seem to increase stride time variability. Further studies are needed to investigate if metronome cueing is more beneficial for individuals with greater baseline gait variability than those included in the current study.


Assuntos
Marcha , Caminhada , Estimulação Acústica , Idoso , Estudos Cross-Over , Sinais (Psicologia) , Feminino , Humanos , Masculino
5.
J Strength Cond Res ; 34(6): 1519-1524, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32459410

RESUMO

Weakley, J, Chalkley, D, Johnston, R, García-Ramos, A, Townshend, A, Dorrell, H, Pearson, M, Morrison, M, and Cole, M. Criterion validity, and interunit and between-day reliability of the FLEX for measuring barbell velocity during commonly used resistance training exercises. J Strength Cond Res 34(6): 1519-1524, 2020-The aim of this study was to assess the criterion validity, interunit reliability (accounting for technological and biological variance), and between-day reliability of a novel optic laser device (FLEX) for quantifying mean concentric velocity. To assess the validity against a three-dimensional motion capture system and interunit reliability with both technological and biological variation, 18 men and women completed repetitions at 20, 40, 60, 80, 90, and 100% of one repetition maximum in the free-weight barbell back squat and bench press. To assess interunit (technological only) reliability, a purpose-built, calibrated rig completed a set protocol with 2 devices. To assess between-day reliability of the technology, the same protocol was repeated 21 days later. Standardized bias, typical error of the estimate (TEE; %), and Pearson's correlation coefficient (r) were used to assess validity, whereas typical error and coefficient of variation (CV%) were calculated for reliability. Overall, TEE (±90 CL) between the FLEX and criterion measure was 0.03 (±0.004) and 0.04 (±0.005) m·s in the back squat and bench press, respectively. For measures of reliability, overall interunit technological variance (CV% [± 90% confidence interval]) was 3.96% (3.83-4.12) but increased to 9.82% (9.31-10.41) and 9.83% (9.17-10.61) in the back squat and bench press, respectively, when biological variance was introduced. Finally, the overall between-day reliability was 3.77% (3.63-3.91). These findings demonstrate that the FLEX provides valid and reliable mean concentric velocity outputs across a range of velocities. Thus, practitioners can confidently implement this device for the monitoring and prescription of resistance training loads.


Assuntos
Coleta de Dados/métodos , Treinamento Resistido , Levantamento de Peso , Adolescente , Adulto , Feminino , Humanos , Lasers , Masculino , Movimento (Física) , Reprodutibilidade dos Testes , Adulto Jovem
6.
J Sports Sci ; 38(6): 658-668, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32009533

RESUMO

Visual exploratory action, in which football players turn their head to perceive their environment, improves prospective performance with the ball during match-play. This scanning action, however, is relevant for players throughout the entire match, as the information perceived through visual exploration is needed to guide movement around the pitch during both offensive and defensive play. This study aimed to understand how a player's on-pitch position, playing role and phase of play influenced the visual exploratory head movements of players during 11v11 match-play. Twenty-two competitive-elite youth footballers (M = 16.25 years) played a total of 1,623 minutes (M = 73.8). Inertial measurement units, global positioning system units and notational analysis were used to quantify relevant variables. Analyses revealed that players explored more extensively when they were in possession of the ball, and less extensively during transition phases, as compared to team ball-possession and opposition ball-possession phases of play. Players explored most extensively when in the back third of the pitch, and least when they were in the middle third of the pitch. Playing role, pitch position and phase of play should be considered as constraints on visual exploratory actions when developing training situations aimed at improving the scanning actions of players.


Assuntos
Comportamento Competitivo/fisiologia , Futebol/psicologia , Percepção Visual/fisiologia , Adolescente , Criança , Sistemas de Informação Geográfica , Cabeça/fisiologia , Humanos , Masculino , Movimento , Futebol/fisiologia , Análise e Desempenho de Tarefas
7.
Front Behav Neurosci ; 13: 231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636549

RESUMO

To control movement of any type, the neural system requires perceptual information to distinguish what actions are possible in any given environment. The behavior aimed at collecting this information, termed "exploration", is vital for successful movement control. Currently, the main function of exploration is understood in the context of specifying the requirements of the task at hand. To accommodate for agency and action-selection, we propose that this understanding needs to be supplemented with a function of exploration that logically precedes the specification of action requirements with the purpose of discovery of possibilities for action-action orientation. This study aimed to provide evidence for the delineation of exploration for action orientation and exploration for action specification using the principles from "General Tau Theory." Sixteen male participants volunteered and performed a laboratory-based exploration task. The visual scenes of different task-specific situations were projected on five monitors surrounding the participant. At a predetermined time, the participant received a simulated ball and was asked to respond by indicating where they would next play the ball. Head movements were recorded using inertial sensors as a measure of exploratory activity. It was shown that movement guidance characteristics varied between different head turns as participants moved from exploration for orientation to exploration for action specification. The first head turn in the trial, used for action-orientation, showed later peaks in the velocity profile and harder closure of the movement gap (gap between the start and end of the head-movement) in comparison to the later head turns. However, no differences were found between the first and the final head turn, which we hypothesized are used mainly for action orientation and specification respectively. These results are in support of differences in the function and control of head movement for discovery of opportunities for action (orientation) vs. head movement for specification of task requirements. Both are important for natural movement, yet in experimental settings,orientation is often neglected. Including both orientation and action specification in an experimental design should maximize generalizability of an experiment to natural behavior. Future studies are required to study the neural bases of movement guidance in order to better understand exploration in anticipation of movement.

8.
J Strength Cond Res ; 33(10): 2648-2654, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31361729

RESUMO

Warman, GE, Cole, MH, Johnston, RD, Chalkley, D, and Pepping, GJ. Using microtechnology to quantify torso angle during match-play in field hockey. J Strength Cond Res 33(10): 2648-2654, 2019-Field hockey is played in a dynamic environment placing specific postural demands on athletes. Little research has been devoted to understanding the nature of a player's torso postures in field hockey match-play and its relationship with the perceptuomotor demands of the sport. We used commercially available microtechnology worn by 16 athletes during a 6-match national tournament to quantify torso flexion/extension angles. Orientation was derived using the inertial and magnetic sensors housed within global positioning system devices, assessing torso angle in the sagittal plane from 91 individual match files. The main independent variable was playing position, whereas the dependent variable was torso flexion/extension, presented as a percentage of playing time spent in 15 × 10° torso postural bands ranging from ≥40° extension to ≥90° flexion. It was shown that athletes spent 89.26% of their playing time in various torso postures, ranging from 20 to 90° of flexion. Defenders spent more time than midfielders (p = 0.004, effect size [ES] = 0.43) and strikers (p = 0.004; ES = 0.44) in the posture band of 10-20° torso flexion, whereas midfielders spent more time between 20 and 30° of torso flexion (p = 0.05; ES = 0.32) than strikers. Conversely, strikers spent more time between 30 and 40° of flexion than defenders (p < 0.001; ES = 0.74). These results reflect the sport-specific and role-specific torso angles adopted by field hockey athletes during match-play. Coaching staff can use these data to gain insight into the postural demands of their sport and inform the preparation of athletes for the perception-action demands of competition.


Assuntos
Hóquei/fisiologia , Microtecnologia , Postura , Tronco/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Sistemas de Informação Geográfica , Humanos , Masculino , Amplitude de Movimento Articular , Adulto Jovem
9.
Front Psychol ; 9: 2520, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618946

RESUMO

Visual exploratory action - scanning movements expressed through left and right rotation of the head - allows perception of a surrounding environment and supports prospective actions. In the dynamically changing football environment, the extent to which exploratory action benefits a player's subsequent performance with the ball is likely influenced by how and when the exploratory action occurs. Although few studies have examined the relationship between visual exploration and on-pitch football performance, it has been reported that a higher frequency of exploratory head movement up to 10-s before receiving the ball increases the likelihood of successful performance with the ball. This study investigated the relationship between head turn frequency and head turn excursion, and how and when exploratory head movement - within 10-s before ball possession - is related to performance with the ball in 11v11 match-play. Thirty-two semi-elite football players competed in 11v11 match-play. Head turn frequency and head turn excursion before ball possession were quantified with wearable inertial measurement units, and actions with the ball were coded via notational analysis. Odds ratio calculations were conducted to determine the associations between exploration variables and on-ball performance outcomes. A total of 783 actions with the ball were analyzed. Results revealed a strong relationship between head turn frequency and head turn excursion. Further, a higher than average head turn frequency and head turn excursion before receiving the ball resulted in a higher likelihood of turning with the ball, playing a pass in the attacking direction, and playing a pass to an area that is opposite to which it was received from. The strength of these outcomes varied for different time periods before receiving the ball. When players explored their environment with higher than average head turn frequency and excursion, they used more complex action opportunities afforded by the surrounding environment. Considerations for future research and practical implications are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA