Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39272754

RESUMO

This paper investigates the feasibility of detecting and estimating the rate of internal hemorrhage based on continuous noninvasive hematocrit measurement. A unique challenge in hematocrit-based hemorrhage detection is that hematocrit decreases in response to hemorrhage and resuscitation with fluids, which makes hemorrhage detection during resuscitation challenging. We developed two sequential inference algorithms for detection of internal hemorrhage based on the Luenberger observer and the extended Kalman filter. The sequential inference algorithms use fluid resuscitation dose and hematocrit measurement as inputs to generate signatures to enable detection of internal hemorrhage. In the case of the extended Kalman filter, the signature is nothing but inferred hemorrhage rate, which allows it to also estimate internal hemorrhage rate. We evaluated the proof-of-concept of these algorithms based on in silico evaluation in 100 virtual patients subject to diverse hemorrhage and resuscitation rates. The results showed that the sequential inference algorithms outperformed naïve internal hemorrhage detection based on the decrease in hematocrit when hematocrit noise level was 1% (average F1 score: Luenberger observer 0.80; extended Kalman filter 0.76; hematocrit 0.59). Relative to the Luenberger observer, the extended Kalman filter demonstrated comparable internal hemorrhage detection performance and superior accuracy in estimating the hemorrhage rate. The analysis of the dependence of the sequential inference algorithms on measurement noise and plant parametric uncertainty showed that small (≤1%) hematocrit noise level and personalization of sequential inference algorithms may enable continuous noninvasive detection of internal hemorrhage and estimation of its rate.

2.
IEEE Access ; 12: 62511-62525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872754

RESUMO

Physiological closed-loop controlled (PCLC) medical devices, such as those designed for blood pressure regulation, can be tested for safety and efficacy in real-world clinical settings. However, relying solely on limited animal and clinical studies may not capture the diverse range of physiological conditions. Credible mathematical models can complement these studies by allowing the testing of the device against simulated patient scenarios. This research involves the development and validation of a low-order lumped-parameter mathematical model of the cardiovascular system's response to fluid perturbation. The model takes rates of hemorrhage and fluid infusion as inputs and provides hematocrit and blood volume, heart rate, stroke volume, cardiac output and mean arterial blood pressure as outputs. The model was calibrated using data from 27 sheep subjects, and its predictive capability was evaluated through a leave-one-out cross-validation procedure, followed by independent validation using 12 swine subjects. Our findings showed small model calibration error against the training dataset, with the normalized root-mean-square error (NRMSE) less than 10% across all variables. The mathematical model and virtual patient cohort generation tool demonstrated a high level of predictive capability and successfully generated a sufficient number of subjects that closely resembled the test dataset. The average NRMSE for the best virtual subject, across two distinct samples of virtual subjects, was below 12.7% and 11.9% for the leave-one-out cross-validation and independent validation dataset. These findings suggest that the model and virtual cohort generator are suitable for simulating patient populations under fluid perturbation, indicating their potential value in PCLC medical device evaluation.

3.
Sensors (Basel) ; 22(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214238

RESUMO

This paper presents a novel computational algorithm to estimate blood volume decompensation state based on machine learning (ML) analysis of multi-modal wearable-compatible physiological signals. To the best of our knowledge, our algorithm may be the first of its kind which can not only discriminate normovolemia from hypovolemia but also classify hypovolemia into absolute hypovolemia and relative hypovolemia. We realized our blood volume classification algorithm by (i) extracting a multitude of features from multi-modal physiological signals including the electrocardiogram (ECG), the seismocardiogram (SCG), the ballistocardiogram (BCG), and the photoplethysmogram (PPG), (ii) constructing two ML classifiers using the features, one to classify normovolemia vs. hypovolemia and the other to classify hypovolemia into absolute hypovolemia and relative hypovolemia, and (iii) sequentially integrating the two to enable multi-class classification (normovolemia, absolute hypovolemia, and relative hypovolemia). We developed the blood volume decompensation state classification algorithm using the experimental data collected from six animals undergoing normovolemia, relative hypovolemia, and absolute hypovolemia challenges. Leave-one-subject-out analysis showed that our classification algorithm achieved an F1 score and accuracy of (i) 0.93 and 0.89 in classifying normovolemia vs. hypovolemia, (ii) 0.88 and 0.89 in classifying hypovolemia into absolute hypovolemia and relative hypovolemia, and (iii) 0.77 and 0.81 in classifying the overall blood volume decompensation state. The analysis of the features embedded in the ML classifiers indicated that many features are physiologically plausible, and that multi-modal SCG-BCG fusion may play an important role in achieving good blood volume classification efficacy. Our work may complement existing computational algorithms to estimate blood volume compensatory reserve as a potential decision-support tool to provide guidance on context-sensitive hypovolemia therapeutic strategy.


Assuntos
Hemorragia , Dispositivos Eletrônicos Vestíveis , Algoritmos , Animais , Volume Sanguíneo/fisiologia , Hipovolemia/diagnóstico , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA