RESUMO
BACKGROUND: Immune checkpoint inhibitors (ICI) have changed the therapeutic landscape of many solid tumors. Modulation of the intestinal microbiota by antibiotics (Abx) has been suggested to impact on ICI outcomes. METHODS: Retrospective analysis of 475 patients with advanced solid tumors treated with ICI from 2015 to 2022. For each patient, the use of Abx was recorded from 1 month before ICI initiation until disease progression or death. The impact of Abx on objective response rates (ORR), disease control rates (DCR), progression-free survival (PFS), and overall survival (OS) was analyzed. Kaplan-Meier and log-rank tests were used to compare survival outcomes. RESULTS: In total 475 patients with advanced solid tumors were evaluated. Median age was 67.5 years and performance status (PS) was 0-1 in 84.6%. 66.5% of patients received Abx during treatment with ICI, mainly beta-lactams (53.8%) and quinolones (35.9%). The early exposure to Abx (from 60 days before to 42 days after the first cycle of ICI) was associated with a lower ORR (27.4% vs 39.4%; Pâ <â .01), a lower DCR (37.3% vs 57.4%; Pâ <â .001), lower PFS (16.8 m vs 27.8 m; HR 0.66; Pâ <â .001]) and lower OS (2.5 m vs 6.6 m; HR 0.68; Pâ =â .001]). The negative impact of Abx on OS and PFS was confirmed by a multivariable analysis. This effect was not observed among patients receiving Abx after 6 weeks from ICI initiation. CONCLUSIONS: Our results validate the hypothesis of a detrimental effect of an early exposure to Abxon the efficacy of ICI in a multi-tumor cohort of patients.
RESUMO
Previous studies have suggested a negative impact of steroids on the efficacy of immune checkpoint inhibitors (ICI), but how this effect is modulated by the dosage and time of administration is yet to be clarified. We have performed a retrospective analysis of 475 patients with advanced solid tumors treated with ICI as monotherapy from 2015 to 2022. Data regarding immune-related adverse events (irAEs) and clinical outcomes were collected. For each patient, the daily steroid dose (in mg/kg of prednisone) was registered until disease progression or death. The impact of cumulative doses on response rates and survival outcomes was analyzed within different periods. The objective response rate (ORR) was significantly lower among patients exposed to steroids within 30 days before the first cycle of ICI (C1) (20.3% vs. 36.7%, p < 0.01) and within the first 90 days of treatment (25.7% vs. 37.7%, p = 0.01). This negative association was confirmed by multivariable analysis. Higher mean steroid doses were observed among non-responders, and cumulative doses were inversely correlated with the disease control rate (DCR) around ICI initiation. Remarkably, poorer outcomes were observed even in patients belonging to the lowest dose quartile compared to the steroid-naïve population. The exposure to steroids after 6 months of ICI was not associated with worse survival outcomes. Our results suggest that the potential impact of steroids on ICI efficacy may be time-dependent, prevailing around ICI initiation, and dose-dependent, with modulation of neutrophil-to-lymphocyte ratio as a possible underlying mechanism.
Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Masculino , Feminino , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/mortalidade , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/métodos , Adulto , Esteroides/uso terapêutico , Esteroides/administração & dosagem , Relação Dose-Resposta a Droga , Idoso de 80 Anos ou mais , Fatores de TempoRESUMO
Adoptive cell therapy (ACT) comprises different strategies to enhance the activity of T lymphocytes and other effector cells that orchestrate the antitumor immune response, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR) gene-modified T cells, and therapy with tumor-infiltrating lymphocytes (TILs). The outstanding results of CAR-T cells in some hematologic malignancies have launched the investigation of ACT in patients with refractory solid malignancies. However, certain characteristics of solid tumors, such as their antigenic heterogeneity and immunosuppressive microenvironment, hamper the efficacy of antigen-targeted treatments. Other ACT modalities, such as TIL therapy, have emerged as promising new strategies. TIL therapy has shown safety and promising activity in certain immunogenic cancers, mainly advanced melanoma, with an exciting rationale for its combination with immune checkpoint inhibitors. However, the implementation of TIL therapy in clinical practice is hindered by several biological, logistic, and economic challenges. In this review, we aim to summarize the current knowledge, available clinical results, and potential areas of future research regarding the use of T cell therapy in patients with solid tumors.
Assuntos
Melanoma , Humanos , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral , Linfócitos T , Terapia Baseada em Transplante de Células e Tecidos , Microambiente TumoralRESUMO
BACKGROUND: Cancer is a risk factor for developing severe COVID19. Additionally, SARS-CoV2 has a special tropism for renal cells and complications like thrombosis or cytokine storm could be enhanced by standard treatments in kidney cancer (i.e., antiangiogenics or immunotherapy). Thus, understanding the impact of COVID19 in patients with this tumor is key for their correct management. METHODS: We designed a retrospective case-control study comparing the outcome of three groups of advanced kidney cancer patients on systemic treatment: cohort A (developed COVID19 while on antiangiogenics), cohort B (developed COVID19 while on immunotherapy) and cohort C (non-infected). Matching factors were age, gender, and treatment. RESULTS: 95 patients were recruited in 16 centers in Spain from September 2020 to May 2021. Finally, 85 were deemed as eligible (23 cohort A, 21 cohort B, 41 cohort C). Patients with COVID required more dose interruptions (25 vs. six) and hospitalizations (10 vs. none) than those without COVID (both p = 0.001). No difference between cohorts A and B was observed regarding hospitalization or length of stay. No ICU admission was registered and one patient in cohort B died due to COVID19. Regarding cancer evolution, three patients in cohort A presented progressive disease after COVID19 compared to two in cohort B. One case in cohort B, initially deemed as stable disease, achieved a partial response after COVID19. CONCLUSIONS: Kidney cancer patients who developed COVID19 while on systemic therapy required more treatment interruptions and hospitalizations than those non-infected. However, no significant impact on cancer outcome was observed. Also, no difference was seen between cases on antiangiogenics or immunotherapy.
Assuntos
COVID-19 , Neoplasias Renais , Humanos , SARS-CoV-2 , Estudos de Casos e Controles , Estudos Retrospectivos , RNA Viral , Neoplasias Renais/terapia , ImunoterapiaRESUMO
Metastatic colorectal cancer (mCRC) with mutated BRAF exhibits distinct biological and molecular features that set it apart from other subtypes of CRC. Current standard treatment for these tumors involves a combination of chemotherapy (CT) and VEGF inhibitors. Recently, targeted therapy against BRAF and immunotherapy (IT) for cases with microsatellite instability (MSI) have been integrated into clinical practice. While targeted therapy has shown promising results, resistance to treatment eventually develops in a significant portion of responsive patients. This article aims to review the available literature on mechanisms of resistance to BRAF inhibitors (BRAFis) and potential therapeutic strategies to overcome them.
RESUMO
Glioblastoma is a disease with a poor prognosis. Multiple efforts have been made to improve the long-term outcome, but the 5-year survival rate is still 5-10%. Recurrence of the disease is the usual way of progression. In this situation, there is no standard treatment. Different treatment options can be considered. Among them would be reoperation or reirradiation. There are different studies that have assessed the impact on survival and the selection of patients who may benefit most from these strategies. Chemotherapy treatments have also been considered in several studies, mainly with alkylating agents, with data mostly from phase II studies. On the other hand, multiple studies have been carried out with target-directed treatments. Bevacizumab, a monoclonal antibody with anti-angiogenic activity, has demonstrated activity in several studies, and the FDA has approved it for this indication. Several other TKI drugs have been evaluated in this setting, but no clear benefit has been demonstrated. Immunotherapy treatments have been shown to be effective in other types of tumors, and several studies have evaluated their efficacy in this disease, both immune checkpoint inhibitors, oncolytic viruses, and vaccines. This paper reviews data from different studies that have evaluated the efficacy of different forms of relapsed glioblastoma.
RESUMO
PARP inhibitors are progressively becoming a part of our therapeutic arsenal against BRCA-defective tumors, because of their capacity to induce synthetic lethality in cells with a deficiency in the homologous recombination repair system. Olaparib and talazoparib have been approved for metastatic breast cancer in carriers of germline BRCA mutations, which are found in approximately 6% of patients with breast cancer. We report the case of a patient with metastatic breast cancer, carrier of a germline mutation in BRCA2, with a complete response to first-line treatment with talazoparib, maintained after 6 years. To the best of our knowledge, this is the longest response reported with a PARP inhibitor in a BRCA-mutated tumor. We have made a review of literature, regarding the rationale for PARP inhibitors in carriers of BRCA mutations and their clinical relevance in the management of advanced breast cancer, as well as their emerging role in early stage disease, alone and in combination with other systemic therapies.
RESUMO
There is substantial heterogeneity between different subtypes of sarcoma regarding their biological behavior and microenvironment, which impacts their responsiveness to immunotherapy. Alveolar soft-part sarcoma, synovial sarcoma and undifferentiated pleomorphic sarcoma show higher immunogenicity and better responses to checkpoint inhibitors. Combination strategies adding immunotherapy to chemotherapy and/or tyrosine-kinase inhibitors globally seem superior to single-agent schemes. Therapeutic vaccines and different forms of adoptive cell therapy, mainly engineered TCRs, CAR-T cells and TIL therapy, are emerging as new forms of immunotherapy for advanced solid tumors. Tumor lymphocytic infiltration and other prognostic and predictive biomarkers are under research.
RESUMO
Few data are available about the immune response to mRNA SARS-CoV-2 vaccines in patients with breast cancer receiving cyclin-dependent kinase 4/6 inhibitors (CDK4/6i). We conducted a prospective, single-center study of patients with breast cancer treated with CDK4/6i who received mRNA-1273 vaccination, as well as a comparative group of healthcare workers. The primary endpoint was to compare the rate and magnitude of humoral and T-cell response after full vaccination. A better neutralizing antibody and anti-S IgG level was observed after vaccination in the subgroup of women receiving CDK4/6i, but a trend toward a reduced CD4 and CD8 T-cell response in the CDK4/6i group was not statistically significant. There were no differences in the rate of COVID-19 after vaccination (19% vs. 12%), but breakthrough infections were observed in those with lower levels of anti-S IgG and neutralizing antibodies after the first dose. A lower rate of CD4 T-cell response was also found in those individuals with breakthrough infections, although a non-significant and similar level of CD8 T-cell response was also observed, regardless of breakthrough infections. The rate of adverse events was higher in patients treated with CDK4/6i, without serious adverse events. In conclusion, there was a robust humoral response, but a blunted T-cell response to mRNA vaccine in women receiving CDK4/6i, suggesting a reduced trend of the adaptative immune response.
RESUMO
Bone sarcomas are a heterogeneous group of rare tumors with a predominance in the young population. Few options of systemic treatment are available once they become unresectable and resistant to conventional chemotherapy. A better knowledge of the key role that tyrosine kinase receptors (VEGFR, RET, MET, AXL, PDGFR, KIT, FGFR, IGF-1R) may play in the pathogenesis of these tumors has led to the development of multi-target inhibitors (TKIs) that are progressively being incorporated into our therapeutic arsenal. Osteosarcoma (OS) is the most frequent primary bone tumor and several TKIs have demonstrated clinical benefit in phase II clinical trials (cabozantinib, regorafenib, apatinib, sorafenib, and lenvatinib). Although the development of TKIs for other primary bone tumors is less advanced, preclinical data and early trials have begun to show their potential benefit in advanced Ewing sarcoma (ES) and rarer bone tumors (chondrosarcoma, chordoma, giant cell tumor of bone, and undifferentiated pleomorphic sarcoma). Previous reviews have mainly provided information on TKIs for OS and ES. We aim to summarize the existing knowledge regarding the use of TKIs in all bone sarcomas including the most recent studies as well as the potential synergistic effects of their combination with other systemic therapies.
Assuntos
Antineoplásicos , Neoplasias Ósseas , Osteossarcoma , Sarcoma , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Metastatic urothelial cancer, associated with a poor prognosis, is still major cause of cancer-related death, with scarce options of effective treatment after progression to platinum-based chemotherapy and immunotherapy. The human epithelial growth factor receptor 2 (Her-2) has been identified as a new therapeutic target in medical oncology. However, despite the encouraging results in breast and gastric cancers, clinical trials with anti-Her-2 monoclonal antibodies and tyrosine-kinase inhibitors have shown limited efficacy of this strategy in urothelial tumors. Notably, more favorable data have been recently shown that antibody-drug conjugates are currently emerging as a novel promising approach for Her-2 targeted therapy in advanced urothelial cancer.
Assuntos
Antineoplásicos Imunológicos , Carcinoma de Células de Transição , Imunoconjugados , Neoplasias da Bexiga Urinária , Humanos , Anticorpos Monoclonais/farmacologia , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Carcinoma de Células de Transição/tratamento farmacológico , Antineoplásicos Imunológicos/uso terapêutico , Tirosina , Neoplasias da Bexiga Urinária/patologiaRESUMO
Immune checkpoint inhibitors have entailed a change of paradigm in the management of multiple malignant diseases and are acquiring a key role in an increasing number of clinical sceneries. However, since their mechanism of action is not limited to the tumor microenvironment, their systemic activity may lead to a wide spectrum of immune-related side effects. Although neurological adverse events are much less frequent than gastrointestinal, hepatic, or lung toxicity, with an incidence of <5%, their potential severity and consequent interruptions to cancer treatment make them of particular importance. Despite them mainly implying peripheral neuropathies, immunotherapy has also been associated with an increased risk of encephalitis and paraneoplastic disorders affecting the central nervous system, often appearing in a clinical context where the appropriate diagnosis and early management of neuropsychiatric symptoms can be challenging. Although the pathogenesis of these complications is not fully understood yet, the blockade of tumoral inhibitory signals, and therefore the elicitation of cytotoxic T-cell-mediated response, seems to play a decisive role. The aim of this review was to summarize the current knowledge about the pathogenic mechanisms, clinical manifestations, and therapeutic recommendations regarding the main forms of neurotoxicity related to checkpoint inhibitors.
RESUMO
INTRODUCTION: Patients with cancer (PC) are at high risk of acquiring COVID-19 and can develop more serious complications. Deeper understanding of vaccines immunogenicity in this population is crucial for adequately planning vaccines programs. The ONCOVac study aimed to comprehensively assess the immunogenicity of mRNA-1273 vaccine in terms of humoral and cellular response. METHODS: We conducted a prospective, single-center study including patients with solid tumours treated with cyclin-dependent kinases 4 and 6 inhibitors (CDK4/6i), immunotherapy (IT) or chemotherapy (CT). Patients were enrolled previously to vaccination with mRNA-1273. We also involved health care workers (HCW) to serve as a control group. We took blood samples before first dose administration (BL), after first dose (1D), and after second dose (2D). The primary objective was to compare the rate and magnitude of T cell response after second dose whereas safety and humoral response were defined as secondary objectives. We also collected patient reported outcomes after both the first and second vaccine dose and a six-month follow-up period to diagnose incident COVID-19 cases was planned. RESULTS: The rate of specific anti-S serologic positivity (anti-S IgG cut-off point at 7,14 BAU/mL) was significantly higher in HCW compared to PC after 1D (100% versus 83.8%; p = 0.04), but similar after 2D (100% versus 95.8%; p = 0.5). This difference after 1D was driven by PC treated with CT (100% versus 64.5%; p = 0.001). Cellular response after 2D was significantly lower in PC than in HCW for both CD4+ (91.7% versus 59.7%; p = 0.001) and CD8+ (94.4% versus 55.6%; p < 0.001) T cells. We found a difference on pre-existing CD4+ T cell response in HCW comparing to PC (36% and 17%, p = 0.03); without difference in pre-existing CD8+ T cell response (31% and 23%, p = 0.5). After excluding patients with pre-existing T cell response, PC achieved even lower CD4+ (50.9% versus 95.5%, p < 0.001) and CD8+ (45.5% versus 95.5%, p < 0.001) T cell response compared with HCW. Regarding safety, PC reported notably more adverse events than HCW (96.6% versus 69.2%, p < 0.001). CONCLUSION: We demonstrated that PC showed a similar humoral response but a lower T cell response following two doses of mRNA-1273 vaccination. Further studies are needed to complement our results and determine the implication of low T cell response on clinical protection of PC against COVID-19.
Assuntos
COVID-19 , Neoplasias , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Neoplasias/terapia , Estudos Prospectivos , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNARESUMO
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype arising from renal cell carcinomas. This tumor is characterized by a predominant angiogenic and immunogenic microenvironment that interplay with stromal, immune cells, and tumoral cells. Despite the obscure prognosis traditionally related to this entity, strategies including angiogenesis inhibition with tyrosine kinase inhibitors (TKIs), as well as the enhancement of the immune system with the inhibition of immune checkpoint proteins, such as PD-1/PDL-1 and CTLA-4, have revolutionized the treatment landscape. This approach has achieved a substantial improvement in life expectancy and quality of life from patients with advanced ccRCC. Unfortunately, not all patients benefit from this success as most patients will finally progress to these therapies and, even worse, approximately 5 to 30% of patients will primarily progress. In the last few years, preclinical and clinical research have been conducted to decode the biological basis underlying the resistance mechanisms regarding angiogenic and immune-based therapy. In this review, we summarize the insights of these molecular alterations to understand the resistance pathways related to the treatment with TKI and immune checkpoint inhibitors (ICIs). Moreover, we include additional information on novel approaches that are currently under research to overcome these resistance alterations in preclinical studies and early phase clinical trials.