Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Sci Rep ; 13(1): 14633, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669988

RESUMO

Gene expression orchestration is a key question in fundamental and applied research. Different models for transcription regulation were proposed, yet the dynamic regulation of RNA polymerase II (RNAP II) activity remains a matter of debate. To improve our knowledge of this topic, we investigated RNAP II motility in eukaryotic cells by combining single particle tracking (SPT) and fluorescence correlation spectroscopy (FCS) techniques, to take advantage of their different sensitivities in order to analyze together slow and fast molecular movements. Thanks to calibrated samples, we developed a benchmark for quantitative analysis of molecular dynamics, to eliminate the main potential instrumental biases. We applied this workflow to study the diffusion of RPB1, the catalytic subunit of RNAP II. By a cross-analysis of FCS and SPT, we could highlight different RPB1 motility states and identifyed a stationary state, a slow diffusion state, and two different modes of subdiffusion. Interestingly, our analysis also unveiled the oversampling by RPB1 of nuclear subdomains. Based on these data, we propose a novel model of spatio-temporal transcription regulation. Altogether, our results highlight the importance of combining microscopy approaches at different time scales to get a full insight into the real complexity of molecular kinetics in cells.


Assuntos
RNA Polimerase II , Imagem Individual de Molécula , Núcleo Celular , Transcrição Gênica , Microscopia
2.
Biophys J ; 117(9): 1615-1625, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590891

RESUMO

How nuclear proteins diffuse and find their targets remains a key question in the transcription field. Dynamic proteins in the nucleus are classically subdiffusive and undergo anomalous diffusion, yet the underlying physical mechanisms are still debated. In this study, we explore the contribution of interactions to the generation of anomalous diffusion by the means of fluorescence spectroscopy and simulation. Using interaction-deficient mutants, our study indicates that HEXIM1 interactions with both 7SK RNA and positive transcription elongation factor b are critical for HEXIM1 subdiffusion and thus provides evidence of the effects of protein-RNA interaction on molecular diffusion. Numerical simulations allowed us to establish that the proportions of distinct oligomeric HEXIM1 subpopulations define the apparent anomaly parameter of the whole population. Slight changes in the proportions of these oligomers can lead to significant shifts in the diffusive features and recapitulate the modifications observed in cells with the various interaction-deficient mutants. By combining simulations and experiments, our work opens new prospects in which the anomaly α coefficient in diffusion becomes a helpful tool to infer alterations in molecular interactions.


Assuntos
Núcleo Celular/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Difusão , Humanos , Modelos Moleculares , Ligação Proteica , RNA Longo não Codificante/genética , Espectrometria de Fluorescência
3.
Med Sci (Paris) ; 34(8-9): 685-692, 2018.
Artigo em Francês | MEDLINE | ID: mdl-30230450

RESUMO

Most cell physiology events are dictated by the integration of perceived signals and the elaboration by cells of adapted answers via the execution of proper transcriptional programs. In order to ensure an optimal control of these answers, many regulation mechanisms have been selected throughout the evolution, thus allowing to fine-tune transcript expression. The transcriptional pause and its release by P-TEFb (Positive Transcription Elongation Factor) have been evidenced two decades ago. Since then, the importance of such mechanisms has been highlighted by the association between alterations of this machinery and the appearance of diseases. P-TEFb and Brd4 have thus recently emerged as potential therapeutical targets for cancers and AIDS notably. In this review, we present a brief case history and an up-to-date synthesis of models for transcriptional pause release. We later discuss on the pathophysiological processes associated with this mechanism and clinical trials targeting Brd4 and P-TEFb.


Assuntos
Terapia de Alvo Molecular/métodos , Proteínas Nucleares/fisiologia , Fator B de Elongação Transcricional Positiva/fisiologia , RNA Polimerase II/metabolismo , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Proteínas de Ciclo Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA