RESUMO
Human immunodeficiency virus (HIV) persistence during antiretroviral therapy (ART) is associated with heightened plasma interleukin-10 (IL-10) levels and PD-1 expression. We hypothesized that IL-10 and PD-1 blockade would lead to control of viral rebound following analytical treatment interruption (ATI). Twenty-eight ART-treated, simian immunodeficiency virus (SIV)mac239-infected rhesus macaques (RMs) were treated with anti-IL-10, anti-IL-10 plus anti-PD-1 (combo) or vehicle. ART was interrupted 12 weeks after introduction of immunotherapy. Durable control of viral rebound was observed in nine out of ten combo-treated RMs for >24 weeks post-ATI. Induction of inflammatory cytokines, proliferation of effector CD8+ T cells in lymph nodes and reduced expression of BCL-2 in CD4+ T cells pre-ATI predicted control of viral rebound. Twenty-four weeks post-ATI, lower viral load was associated with higher frequencies of memory T cells expressing TCF-1 and of SIV-specific CD4+ and CD8+ T cells in blood and lymph nodes of combo-treated RMs. These results map a path to achieve long-lasting control of HIV and/or SIV following discontinuation of ART.
Assuntos
Linfócitos T CD8-Positivos , Interleucina-10 , Macaca mulatta , Receptor de Morte Celular Programada 1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Carga Viral , Animais , Vírus da Imunodeficiência Símia/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Interleucina-10/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Interrupção do TratamentoRESUMO
The MUC1 gene evolved in mammals for adaptation of barrier tissues in response to infections and damage. Paraspeckles are nuclear bodies formed on the NEAT1 lncRNA in response to loss of homeostasis. There is no known intersection of MUC1 with NEAT1 or paraspeckles. Here, we demonstrate that the MUC1-C subunit plays an essential role in regulating NEAT1 expression. MUC1-C activates the NEAT1 gene with induction of the NEAT1_1 and NEAT1_2 isoforms by NF-κB- and MYC-mediated mechanisms. MUC1-C/MYC signaling also induces expression of the SFPQ, NONO and FUS RNA binding proteins (RBPs) that associate with NEAT1_2 and are necessary for paraspeckle formation. MUC1-C integrates activation of NEAT1 and RBP-encoding genes by recruiting the PBAF chromatin remodeling complex and increasing chromatin accessibility of their respective regulatory regions. We further demonstrate that MUC1-C and NEAT1 form an auto-inductive pathway that drives common sets of genes conferring responses to inflammation and loss of homeostasis. Of functional significance, we find that the MUC1-C/NEAT1 pathway is of importance for the cancer stem cell (CSC) state and anti-cancer drug resistance. These findings identify a previously unrecognized role for MUC1-C in the regulation of NEAT1, RBPs, and paraspeckles that has been co-opted in promoting cancer progression.
Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Mucina-1 , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Mucina-1/genética , Mucina-1/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Camundongos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Fator de Processamento Associado a PTB/genética , Fator de Processamento Associado a PTB/metabolismo , Transdução de Sinais/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a DNARESUMO
Prenatal cannabis use is associated with adverse offspring neurodevelopmental outcomes, however the underlying mechanisms are relatively unknown. We sought to determine the impact of chronic delta-9-tetrahydrocannabinol (THC) exposure on fetal neurodevelopment in a rhesus macaque model using advanced imaging combined with molecular and tissue studies. Animals were divided into two groups, control (n = 5) and THC-exposed (n = 5), which received a daily THC edible pre-conception and throughout pregnancy. Fetal T2-weighted MRI was performed at gestational days 85 (G85), G110, G135 and G155 to assess volumetric brain development. At G155, animals underwent cesarean delivery with collection of fetal cerebrospinal fluid (CSF) for microRNA (miRNA) studies and fetal tissue for histologic analysis. THC exposure was associated with significant age by sex interactions in brain growth, and differences in fetal brain histology suggestive of brain dysregulation. Two extracellular vesicle associated-miRNAs were identified in THC-exposed fetal CSF; pathway analysis suggests that these miRNAs are associated with dysregulated axonal guidance and netrin signaling. This data is indicative of subtle molecular changes consistent with the observed histological data, suggesting a potential role for fetal miRNA regulation by THC. Further studies are needed to determine whether these adverse findings correlate with long-term offspring neurodevelopmental health.
Assuntos
Cannabis , MicroRNAs , Gravidez , Animais , Feminino , Macaca mulatta , Dronabinol/efeitos adversos , Feto , Cannabis/efeitos adversos , MicroRNAs/genéticaRESUMO
Rett syndrome is a neurological disease due to loss-of-function mutations in the transcription factor, Methyl CpG binding protein 2 (MECP2). Because overexpression of endogenous MECP2 also causes disease, we have exploited a targeted RNA-editing approach to repair patient mutations where levels of MECP2 protein will never exceed endogenous levels. Here, we have constructed adeno-associated viruses coexpressing a bioengineered wild-type ADAR2 catalytic domain (Editasewt) and either Mecp2-targeting or nontargeting gfp RNA guides. The viruses are introduced systemically into male mice containing a guanosine to adenosine mutation that eliminates MeCP2 protein and causes classic Rett syndrome in humans. We find that in the mutant mice injected with the Mecp2-targeting virus, the brainstem exhibits the highest RNA-editing frequency compared to other brain regions. The efficiency is sufficient to rescue MeCP2 expression and function in the brainstem of mice expressing the Mecp2-targeting virus. Correspondingly, we find that abnormal Rett-like respiratory patterns are alleviated, and survival is prolonged, compared to mice injected with the control gfp guide virus. The levels of RNA editing among most brain regions corresponds to the distribution of guide RNA rather than Editasewt. Our results provide evidence that a targeted RNA-editing approach can alleviate a hallmark symptom in a mouse model of human disease.
Assuntos
Tronco Encefálico , Proteína 2 de Ligação a Metil-CpG , Edição de RNA , Transtornos Respiratórios , Síndrome de Rett , Animais , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Mutação , Transtornos Respiratórios/genética , Transtornos Respiratórios/terapia , Síndrome de Rett/genética , Síndrome de Rett/terapiaRESUMO
Understanding the mechanisms of HIV tissue persistence necessitates the ability to visualize tissue microenvironments where infected cells reside; however, technological barriers limit our ability to dissect the cellular components of these HIV reservoirs. Here, we developed protein and nucleic acid in situ imaging (PANINI) to simultaneously quantify DNA, RNA, and protein levels within these tissue compartments. By coupling PANINI with multiplexed ion beam imaging (MIBI), we measured over 30 parameters simultaneously across archival lymphoid tissues from healthy or simian immunodeficiency virus (SIV)-infected nonhuman primates. PANINI enabled the spatial dissection of cellular phenotypes, functional markers, and viral events resulting from infection. SIV infection induced IL-10 expression in lymphoid B cells, which correlated with local macrophage M2 polarization. This highlights a potential viral mechanism for conditioning an immunosuppressive tissue environment for virion production. The spatial multimodal framework here can be extended to decipher tissue responses in other infectious diseases and tumor biology.
Assuntos
Infecções por HIV , Ácidos Nucleicos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Vírus de DNA , Terapia de Imunossupressão , Macaca mulatta , Macrófagos , Vírus da Imunodeficiência Símia/fisiologia , Carga ViralRESUMO
Interleukin-10 (IL-10) is an immunosuppressive cytokine that signals through STAT3 to regulate T follicular helper (Tfh) cell differentiation and germinal center formation. In SIV-infected macaques, levels of IL-10 in plasma and lymph nodes (LNs) were induced by infection and not normalized with antiretroviral therapy (ART). During chronic infection, plasma IL-10 and transcriptomic signatures of IL-10 signaling were correlated with the cell-associated SIV-DNA content within LN CD4+ memory subsets, including Tfh cells, and predicted the frequency of CD4+ Tfh cells and their cell-associated SIV-DNA content during ART, respectively. In ART-treated rhesus macaques, cells harboring SIV-DNA by DNAscope were preferentially found in the LN B cell follicle in proximity to IL-10. Finally, we demonstrated that the in vivo neutralization of soluble IL-10 in ART-treated, SIV-infected macaques reduced B cell follicle maintenance and, by extension, LN memory CD4+ T cells, including Tfh cells and those expressing PD-1 and CTLA-4. Thus, these data support a role for IL-10 in maintaining a pool of target cells in lymphoid tissue that serve as a niche for viral persistence. Targeting IL-10 signaling to impair CD4+ T cell survival and improve antiviral immune responses may represent a novel approach to limit viral persistence in ART-suppressed people living with HIV.
Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , Humanos , Interleucina-10/genética , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológicoRESUMO
Modern combination antiretroviral therapy (ART) regimens provide abiding viral suppression for most individuals infected with human immunodeficiency virus (HIV). However, the persistence of viral reservoirs ensures that eradication of HIV-1 (i.e., cure) or sustained ART-free remission (i.e., functional cure) remains elusive, necessitating continual, strict ART adherence and contributing to HIV-1-related comorbidities. Eradication of these viral reservoirs, which persist primarily within lymphoid tissue, will require a deeper understanding of the cellular neighborhoods in which latent and active HIV-1-infected cells reside. By pairing highly sensitive in situ hybridization (ISH) with an exceptionally flexible immunofluorescence (IF) approach, we describe a simple, yet highly adaptable multiplex protocol for investigating the quantity, distribution, and characteristics of HIV-1 viral reservoirs.
Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Tecido Linfoide , Macaca mulatta , Fenótipo , Vírus da Imunodeficiência Símia/genética , Carga Viral , Latência ViralRESUMO
Multiplex imaging technologies are now routinely capable of measuring more than 40 antibody-labeled parameters in single cells. However, lateral spillage of signals in densely packed tissues presents an obstacle to the assignment of high-dimensional spatial features to individual cells for accurate cell-type annotation. We devised a method to correct for lateral spillage of cell surface markers between adjacent cells termed REinforcement Dynamic Spillover EliminAtion (REDSEA). The use of REDSEA decreased contaminating signals from neighboring cells. It improved the recovery of marker signals across both isotopic (i.e., Multiplexed Ion Beam Imaging) and immunofluorescent (i.e., Cyclic Immunofluorescence) multiplexed images resulting in a marked improvement in cell-type classification.
Assuntos
Biomarcadores , Linhagem da Célula , Imagem Molecular/métodos , Animais , Imunofluorescência/métodos , Processamento de Imagem Assistida por Computador , Imagem Molecular/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído , Análise de Célula Única/métodos , Análise de Célula Única/normasRESUMO
Human immunodeficiency virus (HIV) persistence in tissue reservoirs is a major barrier to HIV cure. While antiretrovirals (ARVs) suppress viral replication, antiretroviral therapy (ART) interruption results in rapid rebound viremia that may originate from lymphoid tissues. To understand the relationship between anatomic distribution of ARV exposure and viral expression in lymph nodes, we performed mass spectrometry imaging (MSI) of 6 ARVs, RNAscope in situ hybridization for viral RNA (vRNA), and immunohistochemistry of collagen in mesenteric lymph nodes from 8 uninfected and 10 reverse transcriptase simian/human immunodeficiency virus (RT-SHIV)-infected rhesus macaques dosed to steady state with combination ART. MATLAB-based quantitative imaging analysis was used to evaluate spatial and pharmacological relationships between these ARVs, viral RNA (both vRNA+ cells and follicular dendritic cell [FDC]-bound virions), and collagen deposition. Using MSI, 31% of mesenteric lymph node tissue area was found to be not covered by any ARV. Additionally, 28% of FDC-trapped virions and 21% of infected cells were not exposed to any detected ARV. Of the 69% of tissue area that was covered by cumulative ART exposure, nearly 100% of concentrations were greater than in vitro 50% inhibitory concentration (IC50) values; however, 52% of total tissue coverage was from only one ARV, primarily maraviroc. Collagen covered â¼35% of tissue area but did not influence ARV distribution heterogeneity. Our findings are consistent with our hypothesis that ARV distribution, in addition to total-tissue drug concentration, must be considered when evaluating viral persistence in lymph nodes and other reservoir tissues.
Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Colágeno , HIV , Linfonodos , Macaca mulatta , DNA Polimerase Dirigida por RNA , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/genética , Carga Viral , Replicação ViralRESUMO
The primary human immunodeficiency virus (HIV) reservoir is composed of resting memory CD4+ T cells, which often express the immune checkpoint receptors programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which limit T cell activation via synergistic mechanisms. Using simian immunodeficiency virus (SIV)-infected, long-term antiretroviral therapy (ART)-treated rhesus macaques, we demonstrate that PD-1, CTLA-4 and dual CTLA-4/PD-1 immune checkpoint blockade using monoclonal antibodies is well tolerated, with evidence of bioactivity in blood and lymph nodes. Dual blockade was remarkably more effective than PD-1 blockade alone in enhancing T cell cycling and differentiation, expanding effector-memory T cells and inducing robust viral reactivation in plasma and peripheral blood mononuclear cells. In lymph nodes, dual CTLA-4/PD-1 blockade, but not PD-1 alone, decreased the total and intact SIV-DNA in CD4+ T cells, and SIV-DNA and SIV-RNA in B cell follicles, a major site of viral persistence during ART. None of the tested interventions enhanced SIV-specific CD8+ T cell responses during ART or viral control after ART interruption. Thus, despite CTLA-4/PD-1 blockade inducing robust latency reversal and reducing total levels of integrated virus, the degree of reservoir clearance was still insufficient to achieve viral control. These results suggest that immune checkpoint blockade regimens targeting PD-1 and/or CTLA-4, if performed in people living with HIV with sustained aviremia, are unlikely to induce HIV remission in the absence of additional interventions.
Assuntos
Antirretrovirais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Antígeno CTLA-4/imunologia , Receptor de Morte Celular Programada 1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Animais , Antirretrovirais/imunologia , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/farmacocinética , Antígeno CTLA-4/antagonistas & inibidores , Macaca mulatta , Masculino , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral/efeitos dos fármacos , Viremia/induzido quimicamente , Replicação Viral/efeitos dos fármacos , Suspensão de TratamentoRESUMO
BACKGROUND: TLR9 agonists are being developed as immunotherapy against malignancies and infections. TLR9 is primarily expressed in B cells and plasmacytoid dendritic cells (pDCs). TLR9 signalling may be critically important for B cell activity in lymph nodes but little is known about the in vivo impact of TLR9 agonism on human lymph node B cells. As a pre-defined sub-study within our clinical trial investigating TLR9 agonist MGN1703 (lefitolimod) treatment in the context of developing HIV cure strategies (NCT02443935), we assessed TLR9 agonist-mediated effects in lymph nodes. METHODS: Participants received MGN1703 for 24â¯weeks concurrent with antiretroviral therapy. Seven participants completed the sub-study including lymph node resection at baseline and after 24â¯weeks of treatment. A variety of tissue-based immunologic and virologic parameters were assessed. FINDINGS: MGN1703 dosing increased B cell differentiation; activated pDCs, NK cells, and T cells; and induced a robust interferon response in lymph nodes. Expression of Activation-Induced cytidine Deaminase, an essential regulator of B cell diversification and somatic hypermutation, was highly elevated. During MGN1703 treatment IgG production increased and antibody glycosylation patterns were changed. INTERPRETATION: Our data present novel evidence that the TLR9 agonist MGN1703 modulates human lymph node B cells in vivo. These findings warrant further considerations in the development of TLR9 agonists as immunotherapy against cancers and infectious diseases. FUND: This work was supported by Aarhus University Research Foundation, the Danish Council for Independent Research and the NovoNordisk Foundation. Mologen AG provided study drug free of charge.
Assuntos
Diferenciação Celular/efeitos dos fármacos , DNA/administração & dosagem , Infecções por HIV/tratamento farmacológico , Receptor Toll-Like 9/genética , Adulto , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Células Dendríticas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Humanos , Interferon-alfa/genética , Linfonodos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Receptor Toll-Like 9/agonistasRESUMO
Almost 30 years after its initial discovery, infection with the human immunodeficiency virus-1 (HIV-1) remains incurable and the virus persists due to reservoirs of latently infected CD4(+) memory T-cells and sanctuary sites within the infected individual where drug penetration is poor. Reactivating latent viruses has been a key strategy to completely eliminate the virus from the host, but many difficulties and unanswered questions remain. In this review, the latest developments in HIV-persistence and latency research are presented.
Assuntos
Fármacos Anti-HIV/farmacocinética , Infecções por HIV/virologia , HIV-1/fisiologia , Latência Viral , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Humanos , Modelos Biológicos , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacosRESUMO
The phorbol ester Prostratin may either stimulate or inhibit human immunodeficiency virus-1 (HIV-1) replication. Here we report that Prostratin also exhibits a similar dual action upon feline immunodeficiency virus (FIV) replication in an IL-2-dependent feline CD4(+) T-cell line (MYA-1). While withdrawal of IL-2 halted FIV spread, Prostratin rescued virus production and cell viability, mimicking the functions of the cytokine. Conversely, FIV grew rapidly in the presence of IL-2 and this was inhibited by Prostratin. In contrast to HIV-1, Prostratin mediated inhibition of FIV through means other than blocking virus entry. Co-application of the protein kinase C (PKC) inhibitor Gö6850 with Prostratin reversed both the inhibitory and stimulatory effects, suggesting that PKC is crucial for FIV replication.