Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Clin Proteomics ; 21(1): 3, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225548

RESUMO

Protein kinases are frequently dysregulated and/or mutated in cancer and represent essential targets for therapy. Accurate quantification is essential. For breast cancer treatment, the identification and quantification of the protein kinase ERBB2 is critical for therapeutic decisions. While immunohistochemistry (IHC) is the current clinical diagnostic approach, it is only semiquantitative. Mass spectrometry-based proteomics offers quantitative assays that, unlike IHC, can be used to accurately evaluate hundreds of kinases simultaneously. The enrichment of less abundant kinase targets for quantification, along with depletion of interfering proteins, improves sensitivity and thus promotes more effective downstream analyses. Multiple kinase inhibitors were therefore deployed as a capture matrix for kinase inhibitor pulldown (KiP) assays designed to profile the human protein kinome as broadly as possible. Optimized assays were initially evaluated in 16 patient derived xenograft models (PDX) where KiP identified multiple differentially expressed and biologically relevant kinases. From these analyses, an optimized single-shot parallel reaction monitoring (PRM) method was developed to improve quantitative fidelity. The PRM KiP approach was then reapplied to low quantities of proteins typical of yields from core needle biopsies of human cancers. The initial prototype targeting 100 kinases recapitulated intrinsic subtyping of PDX models obtained from comprehensive proteomic and transcriptomic profiling. Luminal and HER2 enriched OCT-frozen patient biopsies subsequently analyzed through KiP-PRM also clustered by subtype. Finally, stable isotope labeled peptide standards were developed to define a prototype clinical method. Data are available via ProteomeXchange with identifiers PXD044655 and PXD046169.

2.
Science ; 381(6662): eabn4180, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676964

RESUMO

Despite substantial advances in targeting mutant KRAS, tumor resistance to KRAS inhibitors (KRASi) remains a major barrier to progress. Here, we report proteostasis reprogramming as a key convergence point of multiple KRASi-resistance mechanisms. Inactivation of oncogenic KRAS down-regulated both the heat shock response and the inositol-requiring enzyme 1α (IRE1α) branch of the unfolded protein response, causing severe proteostasis disturbances. However, IRE1α was selectively reactivated in an ER stress-independent manner in acquired KRASi-resistant tumors, restoring proteostasis. Oncogenic KRAS promoted IRE1α protein stability through extracellular signal-regulated kinase (ERK)-dependent phosphorylation of IRE1α, leading to IRE1α disassociation from 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) E3-ligase. In KRASi-resistant tumors, both reactivated ERK and hyperactivated AKT restored IRE1α phosphorylation and stability. Suppression of IRE1α overcame resistance to KRASi. This study reveals a druggable mechanism that leads to proteostasis reprogramming and facilitates KRASi resistance.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Endorribonucleases , Inibidores Enzimáticos , MAP Quinases Reguladas por Sinal Extracelular , Fatores de Transcrição de Choque Térmico , Neoplasias , Proteostase , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores Enzimáticos/farmacologia , Antineoplásicos/farmacologia , Fatores de Transcrição de Choque Térmico/metabolismo
3.
DNA Repair (Amst) ; 122: 103445, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608404

RESUMO

Double-stranded breaks (DSBs) are toxic DNA damage and a serious threat to genomic integrity. Thus, all living organisms have evolved multiple mechanisms of DNA DSB repair, the two principal ones being classical-non homologous end joining (C-NHEJ), and homology dependent recombination (HDR). In mammals, C-NHEJ is the predominate DSB repair pathway, but how a cell chooses to repair a particular DSB by a certain pathway is still not mechanistically clear. To uncover novel regulators of DSB repair pathway choice, we performed a kinome-wide screen in a human cell line engineered to express a dominant-negative C-NHEJ factor. The intellectual basis for such a screen was our hypothesis that a C-NHEJ-crippled cell line might need to upregulate other DSB repair pathways, including HDR, in order to survive. This screen identified Bromodomain-containing Protein 3 (BRD3) as a protein whose expression was almost completely ablated specifically in a C-NHEJ-defective cell line. Subsequent experimentation demonstrated that BRD3 is a negative regulator of HDR as BRD3-null cell lines proved to be hyper-recombinogenic for gene conversion, sister chromatid exchanges and gene targeting. Mechanistically, BRD3 appears to be working at the level of Radiation Sensitive 51 (RAD51) recruitment. Overall, our results demonstrate that BRD3 is a novel regulator of human DSB repair pathway choice.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Reparo do DNA , Reparo do DNA por Junção de Extremidades , DNA/metabolismo , Mamíferos/genética
4.
Biomedicines ; 10(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36359297

RESUMO

Proliferating cells rely on DNA replication to ensure accurate genome duplication. Cancer cells, including breast cancer cells, exhibit elevated replication stress (RS) due to the uncontrolled oncogenic activation, loss of key tumor suppressors, and defects in the DNA repair machinery. This intrinsic vulnerability provides a great opportunity for therapeutic exploitation. An increasing number of drug candidates targeting RS in breast cancer are demonstrating promising efficacy in preclinical and early clinical trials. However, unresolved challenges lie in balancing the toxicity of these drugs while maintaining clinical efficacy. Furthermore, biomarkers of RS are urgently required to guide patient selection. In this review, we introduce the concept of targeting RS, detail the current therapies that target RS, and highlight the integration of RS with immunotherapies for breast cancer treatment. Additionally, we discuss the potential biomarkers to optimizing the efficacy of these therapies. Together, the continuous advances in our knowledge of targeting RS would benefit more patients with breast cancer.

5.
Br J Cancer ; 124(1): 191-206, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257837

RESUMO

BACKGROUND: Oestrogen Receptor 1 (ESR1) mutations are frequently acquired in oestrogen receptor (ER)-positive metastatic breast cancer (MBC) patients who were treated with aromatase inhibitors (AI) in the metastatic setting. Acquired ESR1 mutations are associated with poor prognosis and there is a lack of effective therapies that selectively target these cancers. METHODS: We performed a proteomic kinome analysis in ESR1 Y537S mutant cells to identify hyperactivated kinases in ESR1 mutant cells. We validated Recepteur d'Origine Nantais (RON) and PI3K hyperactivity through phospho-immunoblot analysis, organoid growth assays, and in an in vivo patient-derived xenograft (PDX) metastatic model. RESULTS: We demonstrated that RON was hyperactivated in ESR1 mutant models, and in acquired palbociclib-resistant (PalbR) models. RON and insulin-like growth factor 1 receptor (IGF-1R) interacted as shown through pharmacological and genetic inhibition and were regulated by the mutant ER as demonstrated by reduced phospho-protein expression with endocrine therapies (ET). We show that ET in combination with a RON inhibitor (RONi) decreased ex vivo organoid growth of ESR1 mutant models, and as a monotherapy in PalbR models, demonstrating its therapeutic efficacy. Significantly, ET in combination with the RONi reduced metastasis of an ESR1 Y537S mutant PDX model. CONCLUSIONS: Our results demonstrate that RON/PI3K pathway inhibition may be an effective treatment strategy in ESR1 mutant and PalbR MBC patients. Clinically our data predict that ET resistance mechanisms can also contribute to CDK4/6 inhibitor resistance.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Camundongos , Mutação , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Cell ; 37(3): 387-402.e7, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32142667

RESUMO

We report that neurofibromin, a tumor suppressor and Ras-GAP (GTPase-activating protein), is also an estrogen receptor-α (ER) transcriptional co-repressor through leucine/isoleucine-rich motifs that are functionally independent of GAP activity. GAP activity, in turn, does not affect ER binding. Consequently, neurofibromin depletion causes estradiol hypersensitivity and tamoxifen agonism, explaining the poor prognosis associated with neurofibromin loss in endocrine therapy-treated ER+ breast cancer. Neurofibromin-deficient ER+ breast cancer cells initially retain sensitivity to selective ER degraders (SERDs). However, Ras activation does play a role in acquired SERD resistance, which can be reversed upon MEK inhibitor addition, and SERD/MEK inhibitor combinations induce tumor regression. Thus, neurofibromin is a dual repressor for both Ras and ER signaling, and co-targeting may treat neurofibromin-deficient ER+ breast tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Neurofibromina 1/genética , Motivos de Aminoácidos , Animais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas Correpressoras , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos Nus , Camundongos SCID , Mutação , Neurofibromina 1/química , Neurofibromina 1/metabolismo , Transdução de Sinais , Tamoxifeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/metabolismo
7.
Nat Commun ; 11(1): 532, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988290

RESUMO

Cancer proteogenomics promises new insights into cancer biology and treatment efficacy by integrating genomics, transcriptomics and protein profiling including modifications by mass spectrometry (MS). A critical limitation is sample input requirements that exceed many sources of clinically important material. Here we report a proteogenomics approach for core biopsies using tissue-sparing specimen processing and microscaled proteomics. As a demonstration, we analyze core needle biopsies from ERBB2 positive breast cancers before and 48-72 h after initiating neoadjuvant trastuzumab-based chemotherapy. We show greater suppression of ERBB2 protein and both ERBB2 and mTOR target phosphosite levels in cases associated with pathological complete response, and identify potential causes of treatment resistance including the absence of ERBB2 amplification, insufficient ERBB2 activity for therapeutic sensitivity despite ERBB2 amplification, and candidate resistance mechanisms including androgen receptor signaling, mucin overexpression and an inactive immune microenvironment. The clinical utility and discovery potential of proteogenomics at biopsy-scale warrants further investigation.


Assuntos
Neoplasias da Mama/genética , Proteogenômica/métodos , Receptor ErbB-2/genética , Trastuzumab/uso terapêutico , Biópsia com Agulha de Grande Calibre , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Regulação para Baixo , Humanos , Projetos Piloto , Receptor ErbB-2/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(51): E11978-E11987, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30498031

RESUMO

A Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomic analysis prioritized dihydropyrimidinase-like-3 (DPYSL3) as a multilevel (RNA/protein/phosphoprotein) expression outlier specific to the claudin-low (CLOW) subset of triple-negative breast cancers. A PubMed informatics tool indicated a paucity of data in the context of breast cancer, which further prioritized DPYSL3 for study. DPYSL3 knockdown in DPYSL3-positive ([Formula: see text]) CLOW cell lines demonstrated reduced proliferation, yet enhanced motility and increased expression of epithelial-to-mesenchymal transition (EMT) markers, suggesting that DPYSL3 is a multifunctional signaling modulator. Slower proliferation in DPYSL3-negative ([Formula: see text]) CLOW cells was associated with accumulation of multinucleated cells, indicating a mitotic defect that was associated with a collapse of the vimentin microfilament network and increased vimentin phosphorylation. DPYSL3 also suppressed the expression of EMT regulators SNAIL and TWIST and opposed p21 activated kinase 2 (PAK2)-dependent migration. However, these EMT regulators in turn induce DPYSL3 expression, suggesting that DPYSL3 participates in negative feedback on EMT. In conclusion, DPYSL3 expression identifies CLOW tumors that will be sensitive to approaches that promote vimentin phosphorylation during mitosis and inhibitors of PAK signaling during migration and EMT.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular/fisiologia , Claudinas/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica , Mitose/fisiologia , Proteínas Musculares/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Retroalimentação Fisiológica , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas Musculares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteogenômica , Proteômica , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Vimentina/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Quinases Ativadas por p21/metabolismo
9.
Mol Cell Proteomics ; 17(11): 2270-2283, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30093420

RESUMO

In quantitative mass spectrometry, the method by which peptides are grouped into proteins can have dramatic effects on downstream analyses. Here we describe gpGrouper, an inference and quantitation algorithm that offers an alternative method for assignment of protein groups by gene locus and improves pseudo-absolute iBAQ quantitation by weighted distribution of shared peptide areas. We experimentally show that distributing shared peptide quantities based on unique peptide peak ratios improves quantitation accuracy compared with conventional winner-take-all scenarios. Furthermore, gpGrouper seamlessly handles two-species samples such as patient-derived xenografts (PDXs) without ignoring the host species or species-shared peptides. This is a critical capability for proper evaluation of proteomics data from PDX samples, where stromal infiltration varies across individual tumors. Finally, gpGrouper calculates peptide peak area (MS1) based expression estimates from multiplexed isobaric data, producing iBAQ results that are directly comparable across label-free, isotopic, and isobaric proteomics approaches.


Assuntos
Algoritmos , Peptídeos/metabolismo , Proteômica/métodos , Animais , Genes , Células HeLa , Humanos , Camundongos , Camundongos SCID , Células NIH 3T3 , Proteoma/metabolismo , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Rep ; 24(6): 1434-1444.e7, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089255

RESUMO

RNA sequencing (RNA-seq) detects estrogen receptor alpha gene (ESR1) fusion transcripts in estrogen receptor-positive (ER+) breast cancer, but their role in disease pathogenesis remains unclear. We examined multiple ESR1 fusions and found that two, both identified in advanced endocrine treatment-resistant disease, encoded stable and functional fusion proteins. In both examples, ESR1-e6>YAP1 and ESR1-e6>PCDH11X, ESR1 exons 1-6 were fused in frame to C-terminal sequences from the partner gene. Functional properties include estrogen-independent growth, constitutive expression of ER target genes, and anti-estrogen resistance. Both fusions activate a metastasis-associated transcriptional program, induce cellular motility, and promote the development of lung metastasis. ESR1-e6>YAP1- and ESR1-e6>PCDH11X-induced growth remained sensitive to a CDK4/6 inhibitor, and a patient-derived xenograft (PDX) naturally expressing the ESR1-e6>YAP1 fusion was also responsive. Transcriptionally active ESR1 fusions therefore trigger both endocrine therapy resistance and metastatic progression, explaining the association with fatal disease progression, although CDK4/6 inhibitor treatment is predicted to be effective.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Fusão Gênica/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Transfecção
11.
Nat Med ; 24(4): 505-511, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29578538

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer diagnosed in more than 200,000 women each year and is recalcitrant to targeted therapies. Although TNBCs harbor multiple hyperactive receptor tyrosine kinases (RTKs), RTK inhibitors have been largely ineffective in TNBC patients thus far. We developed a broadly effective therapeutic strategy for TNBC that is based on combined inhibition of receptors that share the negative regulator PTPN12. Previously, we and others identified the tyrosine phosphatase PTPN12 as a tumor suppressor that is frequently inactivated in TNBC. PTPN12 restrains several RTKs, suggesting that PTPN12 deficiency leads to aberrant activation of multiple RTKs and a co-dependency on these receptors. This in turn leads to the therapeutic hypothesis that PTPN12-deficient TNBCs may be responsive to combined RTK inhibition. However, the repertoire of RTKs that are restrained by PTPN12 in human cells has not been systematically explored. By methodically identifying the suite of RTK substrates (MET, PDGFRß, EGFR, and others) inhibited by PTPN12, we rationalized a combination RTK-inhibitor therapy that induced potent tumor regression across heterogeneous models of TNBC. Orthogonal approaches revealed that PTPN12 was recruited to and inhibited these receptors after ligand stimulation, thereby serving as a feedback mechanism to limit receptor signaling. Cancer-associated mutation of PTPN12 or reduced PTPN12 protein levels diminished this feedback mechanism, leading to aberrant activity of these receptors. Restoring PTPN12 protein levels restrained signaling from RTKs, including PDGFRß and MET, and impaired TNBC survival. In contrast with single agents, combined inhibitors targeting the PDGFRß and MET receptors induced the apoptosis in TNBC cells in vitro and in vivo. This therapeutic strategy resulted in tumor regressions in chemo-refractory patient-derived TNBC models. Notably, response correlated with PTPN12 deficiency, suggesting that impaired receptor feedback may establish a combined addiction to these proto-oncogenic receptors. Taken together, our data provide a rationale for combining RTK inhibitors in TNBC and other malignancies that lack receptor-activating mutations.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Feminino , Humanos , Camundongos Nus , Mutação/genética , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 12/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cell Rep ; 19(9): 1758-1766, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28564596

RESUMO

The breast- and ovarian-cancer-specific tumor suppressor BRCA1 and its heterodimeric partner BARD1 contain RING domains that implicate them as E3 ubiquitin ligases. Despite extensive efforts, the bona fide substrates of BRCA1/BARD1 remain elusive. Here, we used recombinant GST fused to four UBA domains to enrich ubiquitinated proteins followed by a Lys-ε-Gly-Gly (diGly) antibody to enrich ubiquitinated tryptic peptides. This tandem affinity purification method coupled with mass spectrometry identified 101 putative BRCA1/BARD1 E3 substrates. We identified the histone variant macroH2A1 from the screen and showed that BRCA1/BARD1 ubiquitinates macroH2A1 at lysine 123 in vitro and in vivo. Primary human fibroblasts stably expressing a ubiquitination-deficient macroH2A1 mutant were defective in cellular senescence compared to their wild-type counterpart. Our study demonstrates that BRCA1/BARD1 is a macroH2A1 E3 ligase and implicates a role for macroH2A1 K123 ubiquitination in cellular senescence.


Assuntos
Proteína BRCA1/metabolismo , Histonas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Senescência Celular , Cromatografia de Afinidade , Histonas/química , Humanos , Lisina/metabolismo , Especificidade por Substrato , Ubiquitinação
13.
Proc Natl Acad Sci U S A ; 110(17): 6771-6, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23553833

RESUMO

Transcription factors (TFs) are families of proteins that bind to specific DNA sequences, or TF response elements (TFREs), and function as regulators of many cellular processes. Because of the low abundance of TFs, direct quantitative measurement of TFs on a proteome scale remains a challenge. In this study, we report the development of an affinity reagent that permits identification of endogenous TFs at the proteome scale. The affinity reagent is composed of a synthetic DNA containing a concatenated tandem array of the consensus TFREs (catTFRE) for the majority of TF families. By using catTFRE to enrich TFs from cells, we were able to identify as many as 400 TFs from a single cell line and a total of 878 TFs from 11 cell types, covering more than 50% of the gene products that code for the DNA-binding TFs in the genome. We further demonstrated that catTFRE pull-downs could quantitatively measure proteome-wide changes in DNA binding activity of TFs in response to exogenous stimulation by using a label-free MS-based quantification approach. Applying catTFRE on the evaluation of drug effects, we described a panoramic view of TF activations and provided candidates for the elucidation of molecular mechanisms of drug actions. We anticipate that the catTFRE affinity strategy will find widespread applications in biomedical research.


Assuntos
DNA/metabolismo , Regulação da Expressão Gênica/genética , Análise Serial de Proteínas/métodos , Proteoma/genética , Elementos de Resposta/genética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Linhagem Celular , Cromatografia Líquida , Biologia Computacional , Primers do DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Espectrometria de Massas em Tandem , Fatores de Transcrição/metabolismo
14.
Cell ; 145(5): 787-99, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21620140

RESUMO

Elucidation of endogenous cellular protein-protein interactions and their networks is most desirable for biological studies. Here we report our study of endogenous human coregulator protein complex networks obtained from integrative mass spectrometry-based analysis of 3290 affinity purifications. By preserving weak protein interactions during complex isolation and utilizing high levels of reciprocity in the large dataset, we identified many unreported protein associations, such as a transcriptional network formed by ZMYND8, ZNF687, and ZNF592. Furthermore, our work revealed a tiered interplay within networks that share common proteins, providing a conceptual organization of a cellular proteome composed of minimal endogenous modules (MEMOs), complex isoforms (uniCOREs), and regulatory complex-complex interaction networks (CCIs). This resource will effectively fill a void in linking correlative genomic studies with an understanding of transcriptional regulatory protein functions within the proteome for formulation and testing of future hypotheses.


Assuntos
Proteínas/metabolismo , Proteoma/análise , Sequência de Aminoácidos , Proteína BRCA1/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Imunoprecipitação , Espectrometria de Massas , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcrição Gênica
15.
Mol Cell Proteomics ; 10(5): M110.002089, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20972266

RESUMO

Lysine ubiquitination is an important and versatile protein post-translational modification. Numerous cellular functions are regulated by ubiquitination, suggesting that extensive numbers of proteins, if not all, are modified with ubiquitin at certain times. However, proteome-wide profiling of ubiquitination sites in the mammalian system is technically challenging. We report the design and characterization of an engineered protein affinity reagent for the isolation of ubiquitinated proteins and the identification of ubiquitination sites with mass spectrometry. This recombinant protein consists of four tandem repeats of ubiquitin-associated domain from UBQLN1 fused to a GST tag. We used this GST-qUBA reagent to isolate polyubiquitinated proteins and identified 294 endogenous ubiquitination sites on 223 proteins from human 293T cells without proteasome inhibitors or overexpression of ubiquitin. Mitochondrial proteins constitute 14.7% of this data set, implicating ubiquitination in a wide range of mitochondrial functions.


Assuntos
Proteínas de Transporte/química , Proteoma/metabolismo , Proteínas Recombinantes de Fusão/química , Ubiquitinação , Algoritmos , Motivos de Aminoácidos , Cromatografia Líquida/métodos , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peso Molecular , Ligação Proteica , Proteoma/química , Espectrometria de Massas em Tandem , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/isolamento & purificação , Proteínas Ubiquitinadas/metabolismo
16.
Proteomics ; 9(9): 2343-54, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19337993

RESUMO

We report a sensitive peptide pull-down approach in combination with protein identification by LC-MS/MS and qualitative abundance measurements by spectrum counting to identify proteins binding to histone H3 tail containing dimethyl lysine 4 (H3K4me2), dimethyl lysine 9 (H3K9me2), or acetyl lysine 9 (H3K9ac). Our study identified 86 nuclear proteins that associate with the histone H3 tail peptides examined, including seven known direct binders and 16 putative direct binders with conserved PHD finger, bromodomain, and WD40 domains. The reliability of our proteomic screen is supported by the fact that more than one-third of the proteins identified were previously described to associate with histone H3 tail directly or indirectly. To our knowledge, the results presented here are the most comprehensive analysis of H3K4me2, H3K9me2, and H3K9ac associated proteins and will provide a useful resource for researchers studying the mechanisms of histone code effector proteins.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Proteômica/métodos , Cromatografia Líquida , Análise por Conglomerados , Bases de Dados de Proteínas , Células HeLa , Código das Histonas , Histonas/genética , Humanos , Proteínas Nucleares/análise , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
17.
Proc Natl Acad Sci U S A ; 103(31): 11485-90, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16864798

RESUMO

Spindle assembly checkpoint (SAC) ensures bipolar attachment of chromosomes to the mitotic spindle and is essential for faithful chromosome segregation, thereby preventing chromosome instability (CIN). Genetic evidence suggests a causal link between compromised SAC, CIN, and cancer. Bloom syndrome (BS) is a genetic disorder that predisposes affected individuals to cancer. BS cells exhibit elevated rates of sister chromatid exchange, chromosome breaks, and CIN. The BS gene product, BLM, is a member of the RecQ helicases that are required for maintenance of genome stability. The BLM helicase interacts with proteins involved in DNA replication, recombination, and repair and is required for the repair of stalled-replication forks and in the DNA damage response. Here we present biochemical evidence to suggest a role of BLM phosphorylation during mitosis in maintaining chromosome stability. BLM is associated with the SAC kinase MPS1 and is phosphorylated at S144 in a MPS1-dependent manner. Phosphorylated BLM interacts with polo-like kinase 1, a mitotic kinase that binds to phosphoserine/threonine through its polo-box domain (PBD). Furthermore, BS cells expressing BLM-S144A show normal levels of sister chromatid exchange but fail to maintain the mitotic arrest when SAC is activated and exhibit a broad distribution of chromosome numbers. We propose that MPS1-dependent BLM phosphorylation is important for ensuring accurate chromosome segregation, and its deregulation may contribute to cancer.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Instabilidade Cromossômica , DNA Helicases/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Adenosina Trifosfatases/genética , Animais , Antineoplásicos/metabolismo , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , DNA Helicases/genética , Reparo do DNA , Ativação Enzimática , Células HeLa , Humanos , Nocodazol/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RecQ Helicases , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Troca de Cromátide Irmã , Fuso Acromático/metabolismo , Quinase 1 Polo-Like
18.
J Biol Chem ; 280(15): 14709-15, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15677476

RESUMO

DNA-dependent protein kinase (DNA-PK), consisting of Ku and DNA-PKcs subunits, is the key component of the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. Although the kinase activity of DNA-PKcs is essential for NHEJ, thus far, no in vivo substrate has been conclusively identified except for an autophosphorylation site on DNA-PKcs itself (threonine 2609). Here we report the ionizing radiation (IR)-induced autophosphorylation of DNA-PKcs at a novel site, serine 2056, the phosphorylation of which is required for the repair of DSBs by NHEJ. Interestingly, IR-induced DNA-PKcs autophosphorylation is regulated in a cell cycle-dependent manner with attenuated phosphorylation in the S phase. In contrast, DNA replication-associated DSBs resulted in DNA-PKcs autophosphorylation and localization to DNA damage sites. These results indicate that although IR-induced DNA-PKcs phosphorylation is attenuated in the S phase, DNA-PKcs is preferentially activated by the physiologically relevant DNA replication-associated DSBs at the sites of DNA synthesis.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Proteína Quinase Ativada por DNA , Eletroforese em Gel de Poliacrilamida , Vetores Genéticos , Células HeLa , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares , Fosforilação , Radiação Ionizante , Fase S , Serina/química , Treonina/química
19.
Mol Cell Biol ; 24(19): 8356-65, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15367657

RESUMO

DNA single-strand break repair (SSBR) is important for maintaining genome stability and homeostasis. The current SSBR model derived from an in vitro-reconstituted reaction suggests that the SSBR complex mediated by X-ray repair cross-complementing protein 1 (XRCC1) is assembled sequentially at the site of damage. In this study, we provide biochemical data to demonstrate that two preformed XRCC1 protein complexes exist in cycling HeLa cells. One complex contains known enzymes that are important for SSBR, including DNA ligase 3 (DNL3), polynucleotide kinase 3'-phosphatase, and polymerase beta; the other is a new complex that contains DNL3 and the ataxia with oculomotor apraxia type 1 (AOA) gene product aprataxin. We report the characterization of the new XRCC1 complex. XRCC1 is phosphorylated in vivo and in vitro by CK2, and CK2 phosphorylation of XRCC1 on S518, T519, and T523 largely determines aprataxin binding to XRCC1 though its FHA domain. An acute loss of aprataxin by small interfering RNA renders HeLa cells sensitive to methyl methanesulfonate treatment by a mechanism of shortened half-life of XRCC1. Thus, aprataxin plays a role to maintain the steady-state protein level of XRCC1. Collectively, these data provide insights into the SSBR molecular machinery in the cell and point to the involvement of aprataxin in SSBR, thus linking SSBR to the neurological disease AOA.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Metanossulfonato de Metila/metabolismo , Aminoácidos/metabolismo , Caseína Quinase II , Sobrevivência Celular/fisiologia , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
20.
Nat Cell Biol ; 6(7): 673-80, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15181449

RESUMO

Telomere maintenance has been implicated in cancer and ageing, and requires cooperation between a multitude of telomeric factors, including telomerase, TRF1, TRF2, RAP1, TIN2, Tankyrase, PINX1 and POT1 (refs 1-12). POT1 belongs to a family of oligonucleotide-binding (OB)-fold-containing proteins that include Oxytricha nova TEBP, Cdc13, and spPot1, which specifically recognize telomeric single-stranded DNA (ssDNA). In human cells, the loading of POT1 to telomeric ssDNA controls telomerase-mediated telomere elongation. Surprisingly, a human POT1 mutant lacking an OB fold is still recruited to telomeres. However, the exact mechanism by which this recruitment occurs remains unclear. Here we identify a novel telomere protein, PTOP, which interacts with both POT1 and TIN2. PTOP binds to the carboxyl terminus of POT1 and recruits it to telomeres. Inhibition of PTOP by RNA interference (RNAi) or disruption of the PTOP-POT1 interaction hindered the localization of POT1 to telomeres. Furthermore, expression of the respective interaction domains on PTOP and POT1 alone extended telomere length in human cells. Therefore, PTOP heterodimerizes with POT1 and regulates POT1 telomeric recruitment and telomere length.


Assuntos
Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Transporte Ativo do Núcleo Celular/genética , Senescência Celular/genética , DNA Complementar/análise , DNA Complementar/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Dimerização , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Interferência de RNA/fisiologia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA