Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Biomater Transl ; 5(1): 59-68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220667

RESUMO

A composite scaffold composed of a porous scaffold and hydrogel filling can facilitate engraftment, survival, and retention in cell transplantation processes. This study presents a composite scaffold made of poly(ε-caprolactone) (PCL) and methacrylated hyaluronic acid (MeHA) hydrogel and describes the corresponding physical properties (surface area, porosity, and mechanical strength) and host response (angiogenesis and fibrosis) after subcutaneous transplantation. Specifically, we synthesise MeHA with different degrees of substitution and fabricate a PCL scaffold with different porosities. Subsequently, we construct a series of PCL/MeHA composite scaffolds by combining these hydrogels and scaffolds. In experiments with mice, the scaffold composed of 3% PCL and 10-100 kDa, degree of substitution 70% MeHA results in the least fibrosis and a higher degree of angiogenesis. This study highlights the potential of PCL/MeHA composite scaffolds for subcutaneous cell transplantation, given their desirable physical properties and host response.

2.
NMR Biomed ; : e5238, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134479

RESUMO

Dimethyl sulfoxide (DMSO) has wide biomedical applications such as cryoprotectant and hydrophobic drug carrier. Here, we report for the first time that DMSO can generate a distinctive chemical exchange saturation transfer (CEST) signal at around -2 ppm. Structural analogs of DMSO, including aprotic and protic solvents, also demonstrated CEST signals from -1.4 to -3.8 ppm. When CEST detectable barbituric acid (BA) was dissolved in DMSO solution and was co-loaded to liposome, two obvious peaks at 5 and -2 ppm were observed, indicating that DMSO and related solvent system can be monitored in a label-free manner via CEST, which can be further applied to imaging drug nanocarriers. With reference to previous studies, there could be molecular interactions or magnetization transfer pathways, such as the relayed nuclear Overhauser enhancement (rNOE), that lead to this detectable CEST contrast at negative offset frequencies of the Z-spectrum. Our findings suggest that small molecules of organic solvents could be involved in magnetization transfer processes with water and readily detected by CEST magnetic resonance imaging (MRI), providing a new avenue for detecting solvent-water and solvent-drug interactions.

3.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891990

RESUMO

The neuroimmune system is a collection of immune cells, cytokines, and the glymphatic system that plays a pivotal role in the pathogenesis and progression of Alzheimer's disease (AD). Of particular focus are cytokines, a group of immune signaling molecules that facilitate communication among immune cells and contribute to inflammation in AD. Extensive research has shown that the dysregulated secretion of certain cytokines (IL-1ß, IL-17, IL-12, IL-23, IL-6, and TNF-α) promotes neuroinflammation and exacerbates neuronal damage in AD. However, anti-inflammatory cytokines (IL-2, IL-3, IL-33, and IL-35) are also secreted during AD onset and progression, thereby preventing neuroinflammation. This review summarizes the involvement of pro- and anti-inflammatory cytokines in AD pathology and discusses their therapeutic potential.


Assuntos
Doença de Alzheimer , Citocinas , Doença de Alzheimer/metabolismo , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Humanos , Citocinas/metabolismo , Animais , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/imunologia , Inflamação/metabolismo
4.
IEEE J Biomed Health Inform ; 28(8): 4636-4647, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776205

RESUMO

One challenge of chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is the long scan time due to multiple acquisitions of images at different saturation frequency offsets. k-space under-sampling strategy is commonly used to accelerate MRI acquisition, while this could introduce artifacts and reduce signal-to-noise ratio (SNR). To accelerate CEST-MRI acquisition while maintaining suitable image quality, we proposed an attention-based multioffset deep learning reconstruction network (AMO-CEST) with a multiple radial k-space sampling strategy for CEST-MRI. The AMO-CEST also contains dilated convolution to enlarge the receptive field and data consistency module to preserve the sampled k-space data. We evaluated the proposed method on a mouse brain dataset containing 5760 CEST images acquired at a pre-clinical 3 T MRI scanner. Quantitative results demonstrated that AMO-CEST showed obvious improvement over zero-filling method with a PSNR enhancement of 11 dB, a SSIM enhancement of 0.15, and a NMSE decrease of [Formula: see text] in three acquisition orientations. Compared with other deep learning-based models, AMO-CEST showed visual and quantitative improvements in images from three different orientations. We also extracted molecular contrast maps, including the amide proton transfer (APT) and the relayed nuclear Overhauser enhancement (rNOE). The results demonstrated that the CEST contrast maps derived from the CEST images of AMO-CEST were comparable to those derived from the original high-resolution CEST images. The proposed AMO-CEST can efficiently reconstruct high-quality CEST images from under-sampled k-space data and thus has the potential to accelerate CEST-MRI acquisition.


Assuntos
Encéfalo , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Camundongos , Animais , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Algoritmos
5.
NMR Biomed ; 37(8): e5130, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38491754

RESUMO

Chemical exchange saturation transfer (CEST) MRI is a molecular imaging tool that provides physiological information about tissues, making it an invaluable tool for disease diagnosis and guided treatment. Its clinical application requires the acquisition of high-resolution images capable of accurately identifying subtle regional changes in vivo, while simultaneously maintaining a high level of spectral resolution. However, the acquisition of such high-resolution images is time consuming, presenting a challenge for practical implementation in clinical settings. Among several techniques that have been explored to reduce the acquisition time in MRI, deep-learning-based super-resolution (DLSR) is a promising approach to address this problem due to its adaptability to any acquisition sequence and hardware. However, its translation to CEST MRI has been hindered by the lack of the large CEST datasets required for network development. Thus, we aim to develop a DLSR method, named DLSR-CEST, to reduce the acquisition time for CEST MRI by reconstructing high-resolution images from fast low-resolution acquisitions. This is achieved by first pretraining the DLSR-CEST on human brain T1w and T2w images to initialize the weights of the network and then training the network on very small human and mouse brain CEST datasets to fine-tune the weights. Using the trained DLSR-CEST network, the reconstructed CEST source images exhibited improved spatial resolution in both peak signal-to-noise ratio and structural similarity index measure metrics at all downsampling factors (2-8). Moreover, amide CEST and relayed nuclear Overhauser effect maps extrapolated from the DLSR-CEST source images exhibited high spatial resolution and low normalized root mean square error, indicating a negligible loss in Z-spectrum information. Therefore, our DLSR-CEST demonstrated a robust reconstruction of high-resolution CEST source images from fast low-resolution acquisitions, thereby improving the spatial resolution and preserving most Z-spectrum information.


Assuntos
Encéfalo , Aprendizado Profundo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Humanos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Animais , Razão Sinal-Ruído , Camundongos
6.
Magn Reson Med ; 92(1): 57-68, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308151

RESUMO

PURPOSE: To investigate the effect of inhaled oxygen level on dynamic glucose enhanced (DGE) MRI in mouse brain tissue and CSF at 3 T. METHODS: DGE data of brain tissue and CSF from mice under normoxia or hyperoxia were acquired in independent and interleaved experiments using on-resonance variable delay multi-pulse (onVDMP) MRI. A bolus of 0.15 mL filtered 50% D-glucose was injected through the tail vein over 1 min during DGE acquisition. MRS was acquired before and after DGE experiments to confirm the presence of D-glucose. RESULTS: A significantly higher DGE effect under normoxia than under hyperoxia was observed in brain tissue (p = 0.0001 and p = 0.0002 for independent and interleaved experiments, respectively), but not in CSF (p > 0.3). This difference is attributed to the increased baseline MR tissue signal under hyperoxia induced by a shortened T1 and an increased BOLD effect. When switching from hyperoxia to normoxia without glucose injection, a signal change of ˜3.0% was found in brain tissue and a signal change of ˜1.5% was found in CSF. CONCLUSIONS: DGE signal was significantly lower under hyperoxia than that under normoxia in brain tissue, but not in CSF. The reason is that DGE effect size of brain tissue is affected by the baseline signal, which could be influenced by T1 change and BOLD effect. Therefore, DGE experiments in which the oxygenation level is changed from baseline need to be interpreted carefully.


Assuntos
Encéfalo , Glucose , Hiperóxia , Imageamento por Ressonância Magnética , Oxigênio , Animais , Camundongos , Imageamento por Ressonância Magnética/métodos , Glucose/metabolismo , Oxigênio/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Hiperóxia/diagnóstico por imagem , Administração por Inalação , Masculino , Camundongos Endogâmicos C57BL
7.
Adv Sci (Weinh) ; 11(16): e2306188, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417122

RESUMO

Malignant melanoma (MM) is the most aggressive form of skin cancer. The delay in treatment will induce metastasis, resulting in a poor prognosis and even death. Here, a two-step strategy for on-site diagnosis of MM is developed based on the extraction and direct visual quantification of S100A1, a biomarker for melanoma. First, a swellable microneedle is utilized to extract S100A1 in skin interstitial fluid (ISF) with minimal invasion. After elution, antibody-conjugated magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) are introduced. A high expression level of S100A1 gives rise to a robust binding between MMPs and PMPs and reduces the number of free PMPs. By loading the reacted solution into the device with a microfluidic particle dam, the quantity of free PMPs after magnetic separation is displayed with their accumulation length inversely proportional to S100A1 levels. A limit of detection of 18.7 ng mL-1 for S100A1 is achieved. The animal experiment indicates that ISF-based S100A1 quantification using the proposed strategy exhibits a significantly higher sensitivity compared with conventional serum-based detection. In addition, the result is highly comparable with the gold standard enzyme-linked immunosorbent assay based on Lin's concordance correlation coefficient, suggesting the high practicality for routine monitoring of melanoma.


Assuntos
Líquido Extracelular , Melanoma , Agulhas , Proteínas S100 , Neoplasias Cutâneas , Melanoma/diagnóstico , Melanoma/metabolismo , Melanoma/patologia , Animais , Proteínas S100/metabolismo , Líquido Extracelular/metabolismo , Camundongos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Modelos Animais de Doenças , Humanos , Microfluídica/métodos , Pele/metabolismo , Pele/patologia
8.
Pharmaceutics ; 16(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38258112

RESUMO

Treating glioblastoma and monitoring treatment response non-invasively remain challenging. Here, we developed a robust approach using a drug-loaded liposomal hydrogel that is mechanically compatible with the brain, and, simultaneously, we successfully monitored early tumor response using Chemical Exchange Saturation Transfer (CEST) MRI. This CEST-detectable liposomal hydrogel was optimized based on a sustainable drug release and a soft hydrogel for the brain tumor, which is unfavorable for tumor cell proliferation. After injecting the hydrogel next to the tumor, three distinctive CEST contrasts enabled the monitoring of tumor response and drug release longitudinally at 3T. As a result, a continuous tumor volume decrease was observed in the treatment group along with a significant decrease in CEST contrasts relating to the tumor response at 3.5 ppm (Amide Proton Transfer; APT) and at -3.5 ppm (relayed Nuclear Overhauser Effect; rNOE) when compared to the control group (p < 0.05). Interestingly, the molecular change at 3.5 ppm on day 3 (p < 0.05) was found to be prior to the significant decrease in tumor volume on day 5. An APT signal also showed a strong correlation with the number of proliferating cells in the tumors. This demonstrated that APT detected a distinctive decrease in mobile proteins and peptides in tumors before the change in tumor morphology. Moreover, the APT signal showed a regional response to the treatment, associated with proliferating and apoptotic cells, which allowed an in-depth evaluation and prediction of the tumor treatment response. This newly developed liposomal hydrogel allows image-guided brain tumor treatment to address clinical needs using CEST MRI.

9.
NMR Biomed ; 37(7): e5093, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38163739

RESUMO

The fluid transport of cerebrospinal fluid (CSF) and interstitial fluid in surrounding tissues plays an important role in the drainage pathway that facilitates waste clearance from the brain. This pathway is known as the glymphatic or perivascular system, and its functions are dependent on aquaporin-4 (AQP4). Recently, magnetization transfer indirect spin labeling (MISL) magnetic resonance imaging (MRI) has been proposed as a noninvasive and noncontrast-enhanced method for detecting water exchange between CSF and brain tissue. In this study, we first optimized the MISL sequence at preclinical 3 T MRI, and then studied the correlation of MISL in CSF with magnetization transfer (MT) in brain tissue, as well as the altered water exchange under AQP4 inhibition, using C57BL/6 mice. Results showed a strong correlation of MISL signal with MT signal. With the AQP4 inhibitor, we observed a significant decrease in MISL value (P < 0.05), suggesting that the hampered AQP4 activity led to decreased water exchange between CSF and brain tissue or the impairment of the glymphatic function. Overall, our findings demonstrate the potential application of MISL in assessing brain water exchange at 3 T MRI and its potential clinical translation.


Assuntos
Aquaporina 4 , Encéfalo , Líquido Cefalorraquidiano , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL , Marcadores de Spin , Animais , Aquaporina 4/metabolismo , Aquaporina 4/antagonistas & inibidores , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Camundongos , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/diagnóstico por imagem , Água/metabolismo , Masculino , Água Corporal/metabolismo , Niacinamida/análogos & derivados , Tiadiazóis
10.
Magn Reson Med ; 91(1): 51-60, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37814487

RESUMO

PURPOSE: To assess the feasibility of CEST-based creatine (Cr) mapping in brain at 3T using the guanidino (Guan) proton resonance. METHODS: Wild type and knockout mice with guanidinoacetate N-methyltransferase deficiency and low Cr and phosphocreatine (PCr) concentrations in the brain were used to assign the Cr and protein-based arginine contributions to the GuanCEST signal at 2.0 ppm. To quantify the Cr proton exchange rate, two-step Bloch-McConnell fitting was used to fit the extracted CrCEST line-shape and multi-B1 Z-spectral data. The pH response of GuanCEST was simulated to demonstrate its potential for pH mapping. RESULTS: Brain Z-spectra of wild type and guanidinoacetate N-methyltransferase deficiency mice show a clear Guan proton peak at 2.0 ppm at 3T. The CrCEST signal contributes ∼23% to the GuanCEST signal at B1 = 0.8 µT, where a maximum CrCEST effect of 0.007 was detected. An exchange rate range of 200-300 s-1 was estimated for the Cr Guan protons. As revealed by the simulation, an elevated GuanCEST in the brain is observed when B1 is less than 0.4 µT at 3T, when intracellular pH reduces by 0.2. Conversely, the GuanCEST decreases when B1 is greater than 0.4 µT with the same pH drop. CONCLUSIONS: CrCEST mapping is possible at 3T, which has potential for detecting intracellular pH and Cr concentration in brain.


Assuntos
Creatina , Prótons , Camundongos , Animais , Creatina/análise , Guanidinoacetato N-Metiltransferase , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Camundongos Knockout
11.
Brain Behav Immun ; 115: 43-63, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774892

RESUMO

Traumatic brain injury (TBI) and stroke share a common pathophysiology that worsens over time due to secondary tissue injury caused by sustained inflammatory response. However, studies on pharmacological interventions targeting the complex secondary injury cascade have failed to show efficacy. Here, we demonstrated that low-dose ionizing radiation (LDIR) reduced lesion size and reversed motor deficits after TBI and photothrombotic stroke. Magnetic resonance imaging demonstrated significant reduction of infarct volume in LDIR-treated mice after stroke. Systems-level transcriptomic analysis showed that genes upregulated in LDIR-treated stoke mice were enriched in pathways associated with inflammatory and immune response involving microglia. LDIR induced upregulation of anti-inflammatory- and phagocytosis-related genes, and downregulation of key pro-inflammatory cytokine production. These findings were validated by live-cell assays, in which microglia exhibited higher chemotactic and phagocytic capacities after LDIR. We observed substantial microglial clustering at the injury site, glial scar clearance and reversal of motor deficits after stroke. Cortical microglia/macrophages depletion completely abolished the beneficial effect of LDIR on motor function recovery in stroke mice. LDIR promoted axonal projections (brain rewiring) in motor cortex and recovery of brain activity detected by electroencephalography recordings months after stroke. LDIR treatment delayed by 8 h post-injury still maintained full therapeutic effects on motor recovery, indicating that LDIR is a promising therapeutic strategy for TBI and stroke.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Acidente Vascular Cerebral , Camundongos , Animais , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Acidente Vascular Cerebral/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Microglia/metabolismo , Radiação Ionizante , Camundongos Endogâmicos C57BL
12.
Adv Mater ; : e2306450, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37812831

RESUMO

Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.

14.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546935

RESUMO

Myelin degradation is a normal feature of brain aging that accelerates in Alzheimer's disease (AD). To date, however, the underlying biological basis of this correlation remains elusive. The amyloid cascade hypothesis predicts that demyelination is caused by increased levels of the ß-amyloid (Aß) peptide. Here we report on work supporting the alternative hypothesis that early demyelination is upstream of amyloid. We challenged two different mouse models of AD (R1.40 and APP/PS1) using cuprizone-induced demyelination and tracked the responses with both neuroimaging and neuropathology. In oppose to amyloid cascade hypothesis, R1.40 mice, carrying only a single human mutant APP (Swedish; APP SWE ) transgene, showed a more abnormal changes of magnetization transfer ratio and diffusivity than in APP/PS1 mice, which carry both APP SWE and a second PSEN1 transgene (delta exon 9; PSEN1 dE9 ). Although cuprizone targets oligodendrocytes (OL), magnetic resonance spectroscopy and targeted RNA-seq data in R1.40 mice suggested a possible metabolic alternation in axons. In support of alternative hypotheses, cuprizone induced significant intraneuronal amyloid deposition in young APP/PS1, but not in R1.40 mice, and it suggested the presence of PSEN deficiencies, may accelerate Aß deposition upon demyelination. In APP/PS1, mature OL is highly vulnerable to cuprizone with significant DNA double strand breaks (53BP1 + ) formation. Despite these major changes in myelin, OLs, and Aß immunoreactivity, no cognitive impairment or hippocampal pathology was detected in APP/PS1 mice after cuprizone treatment. Together, our data supports the hypothesis that myelin loss can be the cause, but not the consequence, of AD pathology. SIGNIFICANCE STATEMENT: The causal relationship between early myelin loss and the progression of Alzheimer's disease remains unclear. Using two different AD mouse models, R1.40 and APP/PS1, our study supports the hypothesis that myelin abnormalities are upstream of amyloid production and deposition. We find that acute demyelination initiates intraneuronal amyloid deposition in the frontal cortex. Further, the loss of oligodendrocytes, coupled with the accelerated intraneuronal amyloid deposition, interferes with myelin tract diffusivity at a stage before any hippocampus pathology or cognitive impairments occur. We propose that myelin loss could be the cause, not the consequence, of amyloid pathology during the early stages of Alzheimer's disease.

15.
Biomater Adv ; 151: 213496, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290283

RESUMO

Autoimmune uveitis refers to several intraocular inflammation conditions, which are mediated by autoreactive T cells. Regulatory T cells (Tregs) are immunosuppressive cells that have shown potential for resolving various autoimmune diseases, including uveitis. However, poor donor cell dispersion distal to the injection site and plasticity of Treg cells in an inflammatory microenvironment can present obstacles for this immunotherapy. We assessed the use of a physical blend of hyaluronan and methylcellulose (HAMC) as immunoprotective and injectable hydrogel cell delivery system to improve the efficacy of Treg-based therapy in treating experimental autoimmune uveitis (EAU). We demonstrated that the Treg-HAMC blend increased both the survival and stability of Tregs under proinflammatory conditions. Furthermore, we found that the intravitreal HAMC delivery system resulted in a two-fold increase in the number of transferred Tregs in the inflamed eye of EAU mice. Treg-HAMC delivery effectively attenuated ocular inflammation and preserved the visual function of EAU mice. It significantly decreased the number of ocular infiltrates, including the uveitogenic IFN-γ+CD4+ and IL-17+CD4+ T cells. In contrast, intravitreal injection of Treg cells without HAMC only achieved marginal therapeutic effects in EAU. Our findings suggest that HAMC may become a promising delivery vehicle for human uveitis Treg therapy.


Assuntos
Linfócitos T Reguladores , Uveíte , Animais , Humanos , Camundongos , Ácido Hialurônico , Hidrogéis , Inflamação , Metilcelulose , Uveíte/tratamento farmacológico , Olho
16.
NMR Biomed ; 36(6): e4962, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37211349

RESUMO

The article from this special issue was previously published in NMR In Biomedicine , Volume 35, Issue 3, 2022. For completeness we are including the title page of the article below. The full text of the article can be read in Issue 35:3 on Wiley Online Library: https://doi.org/10.1002/nbm.4640.


Assuntos
Encéfalo , Glucose , Aumento da Imagem , Imageamento por Ressonância Magnética , Animais , Camundongos , Encéfalo/metabolismo , Glucose/metabolismo , Imageamento por Ressonância Magnética/métodos , Feminino , Camundongos Endogâmicos C57BL , Espectroscopia de Prótons por Ressonância Magnética , Sensibilidade e Especificidade
17.
Adv Healthc Mater ; 12(21): e2202921, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156574

RESUMO

The delivery of nucleic acid vaccine to stimulate host immune responses against Coronavirus disease 2019 shows promise. However, nucleic acid vaccines have drawbacks, including rapid clearance and poor cellular uptake, that limit their therapeutic potential. Microrobots can be engineered to sustain vaccine release and further control the interactions with immune cells that are vital for robust vaccination. Here, the 3D fabrication of biocompatible and biodegradable microrobots via the two-photon polymerization of gelatin methacryloyl (GelMA) and their proof-of-concept application for DNA vaccine delivery is reported. Programmed degradation and drug release by varying the local exposure dose in 3D laser lithography and further functionalized the GelMA microspheres with polyethyleneimine for DNA vaccine delivery to dendritic cell and primary cells is demonstrated. In mice, the DNA vaccine delivered by functionalized microspheres elicited fast, enhanced, and durable antigen expression, which may lead to prolonged protection. Furthermore, we demonstrate the maneuverability of microrobots by fabricating GelMA microspheres on magnetic skeletons. In conclusion, GelMA microrobots may provide an efficient vaccination strategy by controlling the expression duration of DNA vaccines.


Assuntos
COVID-19 , Vacinas de DNA , Animais , Camundongos , Sistemas de Liberação de Medicamentos , Gelatina , Vacinação , Hidrogéis
18.
J Neuroinflammation ; 20(1): 71, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915108

RESUMO

BACKGROUND: Systemic activation of the immune system can exert detrimental effects on the central nervous system. Periodontitis, a chronic disease of the oral cavity, is a common source of systemic inflammation. Neuroinflammation might be a result of this to accelerate progressive deterioration of neuronal functions during aging or exacerbate pre-existing neurodegenerative diseases, such as Alzheimer's disease. With advancing age, the progressive increase in the body's pro-inflammatory status favors the state of vulnerability to both periodontitis and Alzheimer's disease. In the present study, we sought to delineate the roles of cytokines in the pathogenesis of both diseases. METHODS: To examine the impacts of periodontitis on the onset and progression of Alzheimer's disease, 6-month-old female 3 × Tg-AD mice and their age-matched non-transgenic mice were employed. Periodontitis was induced using two different experimental models: heat-killed bacterial-induced periodontitis and ligature-induced periodontitis. To delineate the roles of pro-inflammatory cytokines in the pathogenesis of periodontitis and Alzheimer's disease, interleukin 1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) were also injected into the buccal mandibular vestibule of mice. RESULTS: Here, we show that IL-1ß and TNF-α were two of the most important and earliest cytokines upregulated upon periodontal infection. The systemic upregulation of these two cytokines promoted a pro-inflammatory environment in the brain contributing to the development of Alzheimer's disease-like pathology and cognitive dysfunctions. Periodontitis-induced systemic inflammation also enhanced brain inflammatory responses and subsequently exacerbated Alzheimer's disease pathology and cognitive impairment in 3 × Tg-AD mice. The role of inflammation in connecting periodontitis to Alzheimer's disease was further affirmed in the conventional magnetization transfer experiment in which increased glial responses resulting from periodontitis led to decreased magnetization transfer ratios in the brain of 3 × Tg-AD mice. CONCLUSIONS: Systemic inflammation resulting from periodontitis contributed to the development of Alzheimer's disease tau pathology and subsequently led to cognitive decline in non-transgenic mice. It also potentiated Alzheimer's disease pathological features and exacerbated impairment of cognitive function in 3 × Tg-AD mice. Taken together, this study provides convincing evidence that systemic inflammation serves as a connecting link between periodontitis and Alzheimer's disease.


Assuntos
Doença de Alzheimer , Periodontite , Feminino , Camundongos , Animais , Fator de Necrose Tumoral alfa , Doença de Alzheimer/patologia , Interleucina-1beta , Inflamação , Citocinas , Camundongos Transgênicos
19.
NMR Biomed ; : e4937, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36965064

RESUMO

Chemical exchange saturation transfer (CEST) sensitively detects molecular alterations in the brain, such as relayed nuclear Overhauser effect (rNOE) CEST contrast at -3.5 ppm representing aliphatic protons in both lipids and proteins, and CEST contrast at 3.5 ppm correlating with amide proton in proteins. Myelin is rich in lipids and proteins, and therefore CEST can be explored as a biomarker for myelin pathology, which could contribute to the diagnosis and prognosis of multiple sclerosis (MS). In the current study, we investigate the specificity of aliphatic rNOE and the amide pool in myelin detection using the cuprizone (CPZ) mouse model, which recapitulates the demyelination and remyelination of MS. In this study, preclinical 3T MRI was performed in 19 male C57BL/6 mice. Mice in the normal control (NC) group (n = 9) were fed a normal diet for the whole course, while mice in the CPZ group (n = 10) were fed with CPZ for 10 weeks, followed by 4 weeks with a normal diet. The CEST contrast of rNOE (-3.5 ppm) and amide (3.5 ppm) in brain regions of the corpus callosum (CC) and the caudate putamen were compared. Statistical differences between the groups were calculated using two-way ANOVA. We observed significantly decreased rNOE (NC: 4.85% ± 0.09%/s vs. CPZ: 3.88% ± 0.18%/s, p = 0.007) and amide pool (NC: 3.20% ± 0.10%/s vs. CPZ: 2.46% ± 0.16%/s, p = 0.02) in the CC after 8 weeks on CPZ diet (p < 0.05). Moreover, the rNOE in the CPZ group recovered to a level comparable with the NC group at week 14 (p = 0.39), while amide remained at a level as low as that for the NC group (p = 0.051). Significant rNOE and amide changes, validated by immunohistochemistry results for demyelination and remyelination, demonstrate the huge potential of CEST for revealing myelin pathology, which has implications for MS identification at the clinical field strength of 3T.

20.
J Control Release ; 354: 208-220, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623695

RESUMO

Image guided nose-to-brain drug delivery provides a non-invasive way to monitor drug delivered to the brain, and the intranasal administration could increase effective dose via bypassing Blood Brain Barrier (BBB). Here, we investigated the imaging of liposome-based drug delivery to the brain via intranasal administration, in which the liposome could penetrate mucus and could be detected by chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) at 3T field strength. Liposomes were loaded with a computed tomography (CT) contrast agent, iohexol (Ioh-Lipo), which has specific amide protons exchanging at 4.3 ppm of Z-spectrum (or CEST spectrum). Ioh-Lipo generated CEST contrasts of 35.4% at 4.3 ppm, 1.8% at -3.4 ppm and 20.6% at 1.2 ppm in vitro. After intranasal administration, these specific CEST contrasts were observed in both olfactory bulb (OB) and frontal lobe (FL) in the case of 10% polyethylene glycol (PEG) Ioh-Lipo. We observed obvious increases in CEST contrast in OB half an hour after the injection of 10% PEG Ioh-Lipo, with a percentage increase of 62.0% at 4.3 ppm, 10.9% at -3.4 ppm and 25.7% at 1.2 ppm. Interestingly, the CEST map at 4.3 ppm was distinctive from that at -3.4 pm and 1.2 ppm. The highest contrast of 4.3 ppm was at the external plexiform layer (EPL) and the region between left and right OB (LROB), while the CEST contrast at -3.4 ppm had no significant difference among all investigated regions with slightly higher signal in olfactory limbus (OL, between OB and FL) and FL, as validated with histology. While no substantial increase of CEST contrast at 4.3 ppm, -3.4 ppm or 1.2 ppm was observed in OB and FL when 1% PEG Ioh-Lipo was administered. We demonstrated for the first time the feasibility of non-invasively detecting the nose-to-brain delivery of liposomes using CEST MRI. This multiple-contrast approach is necessary to image the specific distribution of iohexol and liposome simultaneously and independently, especially when designing drug carriers for nose-to-brain drug delivery.


Assuntos
Iohexol , Lipossomos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Sistemas de Liberação de Medicamentos , Meios de Contraste
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA