Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Science ; 384(6701): 1220-1227, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38753766

RESUMO

Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an adeno-associated virus (AAV) capsid, BI-hTFR1, that binds human transferrin receptor (TfR1), a protein expressed on the blood-brain barrier. BI-hTFR1 was actively transported across human brain endothelial cells and, relative to AAV9, provided 40 to 50 times greater reporter expression in the CNS of human TFRC knockin mice. The enhanced tropism was CNS-specific and absent in wild-type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared with AAV9. These findings establish BI-hTFR1 as a potential vector for human CNS gene therapy.


Assuntos
Antígenos CD , Encéfalo , Capsídeo , Técnicas de Transferência de Genes , Vetores Genéticos , Glucosilceramidase , Receptores da Transferrina , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Dependovirus , Células Endoteliais/metabolismo , Técnicas de Introdução de Genes , Terapia Genética , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Glucosilceramidase/genética , Doença de Gaucher/genética , Doença de Gaucher/terapia , Doença de Parkinson/genética , Doença de Parkinson/terapia
2.
Cell Rep ; 43(4): 113953, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517896

RESUMO

The gastrointestinal (GI) tract is innervated by intrinsic neurons of the enteric nervous system (ENS) and extrinsic neurons of the central nervous system and peripheral ganglia. The GI tract also harbors a diverse microbiome, but interactions between the ENS and the microbiome remain poorly understood. Here, we activate choline acetyltransferase (ChAT)-expressing or tyrosine hydroxylase (TH)-expressing gut-associated neurons in mice to determine effects on intestinal microbial communities and their metabolites as well as on host physiology. The resulting multi-omics datasets support broad roles for discrete peripheral neuronal subtypes in shaping microbiome structure, including modulating bile acid profiles and fungal colonization. Physiologically, activation of either ChAT+ or TH+ neurons increases fecal output, while only ChAT+ activation results in increased colonic contractility and diarrhea-like fluid secretion. These findings suggest that specific subsets of peripherally activated neurons differentially regulate the gut microbiome and GI physiology in mice without involvement of signals from the brain.


Assuntos
Microbioma Gastrointestinal , Neurônios , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos , Neurônios/metabolismo , Colina O-Acetiltransferase/metabolismo , Sistema Nervoso Entérico/fisiologia , Camundongos Endogâmicos C57BL , Tirosina 3-Mono-Oxigenase/metabolismo , Masculino , Trato Gastrointestinal/microbiologia
4.
Sci Adv ; 9(41): eadk3986, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824615

RESUMO

The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.


Assuntos
Callithrix , Neocórtex , Animais , Neocórtex/fisiologia , Neurônios/fisiologia , Distribuição Tecidual
5.
Nature ; 622(7983): 552-561, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758947

RESUMO

Spatially charting molecular cell types at single-cell resolution across the 3D volume is critical for illustrating the molecular basis of brain anatomy and functions. Single-cell RNA sequencing has profiled molecular cell types in the mouse brain1,2, but cannot capture their spatial organization. Here we used an in situ sequencing method, STARmap PLUS3,4, to profile 1,022 genes in 3D at a voxel size of 194 × 194 × 345 nm3, mapping 1.09 million high-quality cells across the adult mouse brain and spinal cord. We developed computational pipelines to segment, cluster and annotate 230 molecular cell types by single-cell gene expression and 106 molecular tissue regions by spatial niche gene expression. Joint analysis of molecular cell types and molecular tissue regions enabled a systematic molecular spatial cell-type nomenclature and identification of tissue architectures that were undefined in established brain anatomy. To create a transcriptome-wide spatial atlas, we integrated STARmap PLUS measurements with a published single-cell RNA-sequencing atlas1, imputing single-cell expression profiles of 11,844 genes. Finally, we delineated viral tropisms of a brain-wide transgene delivery tool, AAV-PHP.eB5,6. Together, this annotated dataset provides a single-cell resource that integrates the molecular spatial atlas, brain anatomy and the accessibility to genetic manipulation of the mammalian central nervous system.


Assuntos
Sistema Nervoso Central , Imageamento Tridimensional , Análise de Célula Única , Transcriptoma , Animais , Camundongos , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/metabolismo , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Análise de Célula Única/métodos , Medula Espinal/anatomia & histologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Transcriptoma/genética , Análise da Expressão Gênica de Célula Única , Tropismo Viral , Conjuntos de Dados como Assunto , Transgenes/genética , Imageamento Tridimensional/métodos
6.
PLoS Biol ; 21(7): e3002112, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37467291

RESUMO

Viruses have evolved the ability to bind and enter cells through interactions with a wide variety of cell macromolecules. We engineered peptide-modified adeno-associated virus (AAV) capsids that transduce the brain through the introduction of de novo interactions with 2 proteins expressed on the mouse blood-brain barrier (BBB), LY6A or LY6C1. The in vivo tropisms of these capsids are predictable as they are dependent on the cell- and strain-specific expression of their target protein. This approach generated hundreds of capsids with dramatically enhanced central nervous system (CNS) tropisms within a single round of screening in vitro and secondary validation in vivo thereby reducing the use of animals in comparison to conventional multi-round in vivo selections. The reproducible and quantitative data derived via this method enabled both saturation mutagenesis and machine learning (ML)-guided exploration of the capsid sequence space. Notably, during our validation process, we determined that nearly all published AAV capsids that were selected for their ability to cross the BBB in mice leverage either the LY6A or LY6C1 protein, which are not present in primates. This work demonstrates that AAV capsids can be directly targeted to specific proteins to generate potent gene delivery vectors with known mechanisms of action and predictable tropisms.


Assuntos
Barreira Hematoencefálica , Capsídeo , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Capsídeo/metabolismo , Vetores Genéticos , Sistema Nervoso Central/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo
7.
Nat Nanotechnol ; 18(10): 1241-1251, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430038

RESUMO

Crossing the blood-brain barrier in primates is a major obstacle for gene delivery to the brain. Adeno-associated viruses (AAVs) promise robust, non-invasive gene delivery from the bloodstream to the brain. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates. Here we report on AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques, which has improved delivery efficiency in the brains of multiple non-human primate species: marmoset, rhesus macaque and green monkey. CAP-Mac is neuron biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques and is vasculature biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver functional GCaMP for ex vivo calcium imaging across multiple brain areas, or a cocktail of fluorescent reporters for Brainbow-like labelling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. As such, CAP-Mac is shown to have potential for non-invasive systemic gene transfer in the brains of non-human primates.


Assuntos
Encéfalo , Callithrix , Humanos , Animais , Recém-Nascido , Chlorocebus aethiops , Macaca mulatta/genética , Callithrix/genética , Encéfalo/fisiologia , Técnicas de Transferência de Genes , Neurônios , Vetores Genéticos/genética
8.
Res Sq ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36789432

RESUMO

Adeno-associated viruses (AAVs) promise robust gene delivery to the brain through non-invasive, intravenous delivery. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates (NHPs). Here we describe AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques with improved efficiency in the brain of multiple NHP species: marmoset, rhesus macaque, and green monkey. CAP-Mac is neuron-biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques, and is vasculature-biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver (1) functional GCaMP for ex vivo calcium imaging across multiple brain areas, and (2) a cocktail of fluorescent reporters for Brainbow-like labeling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. Given its capabilities for systemic gene transfer in NHPs, CAP-Mac promises to help unlock non-invasive access to the brain.

9.
bioRxiv ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38187643

RESUMO

Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an AAV capsid, BI-hTFR1, that binds human Transferrin Receptor (TfR1), a protein expressed on the blood-brain barrier (BBB). BI-hTFR1 was actively transported across a human brain endothelial cell layer and, relative to AAV9, provided 40-50 times greater reporter expression in the CNS of human TFRC knock-in mice. The enhanced tropism was CNS-specific and absent in wild type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared to AAV9. These findings establish BI-hTFR1 as a promising vector for human CNS gene therapy.

10.
Nat Cardiovasc Res ; 1(4): 389-400, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35571675

RESUMO

Endothelial cells have a crucial role in nervous system function, and mounting evidence points to endothelial impairment as a major contributor to a wide range of neurological diseases. However, tools to genetically interrogate these cells in vivo remain limited. Here, we describe AAV-BI30, a capsid that specifically and efficiently transduces endothelial cells throughout the central nervous system. At relatively low systemic doses, this vector transduces the majority of arterial, capillary, and venous endothelial cells in the brain, retina, and spinal cord vasculature of adult C57BL/6 mice. Furthermore, we show that AAV-BI30 robustly transduces endothelial cells in multiple mouse strains and rats in vivo and human brain microvascular endothelial cells in vitro. Finally, we demonstrate AAV-BI30's capacity to achieve efficient and endothelial-specific Cre-mediated gene manipulation in the central nervous system. This combination of attributes makes AAV-BI30 uniquely well-suited to address outstanding research questions in neurovascular biology and aid the development of therapeutics to remediate endothelial dysfunction in disease.

11.
PLoS One ; 14(11): e0225206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725765

RESUMO

The engineered AAV-PHP.B family of adeno-associated virus efficiently delivers genes throughout the mouse central nervous system. To guide their application across disease models, and to inspire the development of translational gene therapy vectors for targeting neurological diseases in humans, we sought to elucidate the host factors responsible for the CNS tropism of the AAV-PHP.B vectors. Leveraging CNS tropism differences across 13 mouse strains, we systematically determined a set of genetic variants that segregate with the permissivity phenotype, and rapidly identified LY6A as an essential receptor for the AAV-PHP.B vectors. Interfering with LY6A by CRISPR/Cas9-mediated Ly6a disruption or with blocking antibodies reduced transduction of mouse brain endothelial cells by AAV-PHP.eB, while ectopic expression of Ly6a increased AAV-PHP.eB transduction of HEK293T and CHO cells by 30-fold or more. Importantly, we demonstrate that this newly discovered mode of AAV binding and transduction can occur independently of other known AAV receptors. These findings illuminate the previously reported species- and strain-specific tropism characteristics of the AAV-PHP.B vectors and inform ongoing efforts to develop next-generation AAV vehicles for human CNS gene therapy.


Assuntos
Barreira Hematoencefálica/metabolismo , Técnicas de Transferência de Genes , Transdução Genética , Transgenes , Animais , Antígenos Ly/química , Antígenos Ly/genética , Encéfalo/metabolismo , Linhagem Celular , Dependovirus/genética , Variação Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Neurônios/metabolismo , Tropismo
12.
Nat Protoc ; 14(8): 2597, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31312046

RESUMO

During the production process, the authors of this paper supplied revised versions of Figs. 2-5, Supplementary Tables 1-4, and Supplementary Videos 1-3, but because of publisher error, these revised items were not included in the final published version of the protocol. The figures have been updated in the PDF and HTML versions of the paper, and the revised Supplementary Information files are now available online. We note that the figures have been revised to improve their resolution only; the content of the figures and the data reflected remain unchanged. Also, print requirements impose some limits on figure resolution, but the authors have made very high-resolution versions of Figs. 2-5 available at as Source data.

13.
Nat Commun ; 10(1): 1944, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028266

RESUMO

Heart rate is under the precise control of the autonomic nervous system. However, the wiring of peripheral neural circuits that regulate heart rate is poorly understood. Here, we develop a clearing-imaging-analysis pipeline to visualize innervation of intact hearts in 3D and employed a multi-technique approach to map parasympathetic and sympathetic neural circuits that control heart rate in mice. We identify cholinergic neurons and noradrenergic neurons in an intrinsic cardiac ganglion and the stellate ganglia, respectively, that project to the sinoatrial node. We also report that the heart rate response to optogenetic versus electrical stimulation of the vagus nerve displays different temporal characteristics and that vagal afferents enhance parasympathetic and reduce sympathetic tone to the heart via central mechanisms. Our findings provide new insights into neural regulation of heart rate, and our methodology to study cardiac circuits can be readily used to interrogate neural control of other visceral organs.


Assuntos
Frequência Cardíaca/fisiologia , Neurônios Motores/fisiologia , Animais , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Eletrofisiologia , Feminino , Masculino , Camundongos , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/fisiologia , Nervo Vago/metabolismo , Nervo Vago/fisiologia
14.
Nat Protoc ; 14(2): 379-414, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30626963

RESUMO

We recently developed adeno-associated virus (AAV) capsids to facilitate efficient and noninvasive gene transfer to the central and peripheral nervous systems. However, a detailed protocol for generating and systemically delivering novel AAV variants was not previously available. In this protocol, we describe how to produce and intravenously administer AAVs to adult mice to specifically label and/or genetically manipulate cells in the nervous system and organs, including the heart. The procedure comprises three separate stages: AAV production, intravenous delivery, and evaluation of transgene expression. The protocol spans 8 d, excluding the time required to assess gene expression, and can be readily adopted by researchers with basic molecular biology, cell culture, and animal work experience. We provide guidelines for experimental design and choice of the capsid, cargo, and viral dose appropriate for the experimental aims. The procedures outlined here are adaptable to diverse biomedical applications, from anatomical and functional mapping to gene expression, silencing, and editing.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/química , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Dependovirus/metabolismo , Trato Gastrointestinal/citologia , Trato Gastrointestinal/metabolismo , Genes Reporter , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Injeções Intravenosas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Medula Espinal/citologia , Medula Espinal/metabolismo , Transgenes , Proteína Vermelha Fluorescente
15.
Nat Neurosci ; 20(8): 1172-1179, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28671695

RESUMO

Adeno-associated viruses (AAVs) are commonly used for in vivo gene transfer. Nevertheless, AAVs that provide efficient transduction across specific organs or cell populations are needed. Here, we describe AAV-PHP.eB and AAV-PHP.S, capsids that efficiently transduce the central and peripheral nervous systems, respectively. In the adult mouse, intravenous administration of 1 × 1011 vector genomes (vg) of AAV-PHP.eB transduced 69% of cortical and 55% of striatal neurons, while 1 × 1012 vg of AAV-PHP.S transduced 82% of dorsal root ganglion neurons, as well as cardiac and enteric neurons. The efficiency of these vectors facilitates robust cotransduction and stochastic, multicolor labeling for individual cell morphology studies. To support such efforts, we provide methods for labeling a tunable fraction of cells without compromising color diversity. Furthermore, when used with cell-type-specific promoters and enhancers, these AAVs enable efficient and targetable genetic modification of cells throughout the nervous system of transgenic and non-transgenic animals.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Neurônios/metabolismo , Sistema Nervoso Periférico/metabolismo , Animais , Gânglios Espinais/metabolismo , Terapia Genética/métodos , Camundongos Transgênicos , Transdução Genética/métodos
16.
Sci Transl Med ; 9(387)2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446689

RESUMO

Bone tissue harbors unique and essential physiological processes, such as hematopoiesis, bone growth, and bone remodeling. To enable visualization of these processes at the cellular level in an intact environment, we developed "Bone CLARITY," a bone tissue clearing method. We used Bone CLARITY and a custom-built light-sheet fluorescence microscope to detect the endogenous fluorescence of Sox9-tdTomato+ osteoprogenitor cells in the tibia, femur, and vertebral column of adult transgenic mice. To obtain a complete distribution map of these osteoprogenitor cells, we developed a computational pipeline that semiautomatically detects individual Sox9-tdTomato+ cells in their native three-dimensional environment. Our computational method counted all labeled osteoprogenitor cells without relying on sampling techniques and displayed increased precision when compared with traditional stereology techniques for estimating the total number of these rare cells. We demonstrate the value of the clearing-imaging pipeline by quantifying changes in the population of Sox9-tdTomato-labeled osteoprogenitor cells after sclerostin antibody treatment. Bone tissue clearing is able to provide fast and comprehensive visualization of biological processes in intact bone tissue.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Osteogênese/fisiologia , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/metabolismo
17.
Nat Biotechnol ; 34(2): 204-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26829320

RESUMO

Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics. Here we describe a capsid selection method, called Cre recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV9 (refs. 14,15,16,17), and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications.


Assuntos
Dependovirus/genética , Engenharia Genética/métodos , Vetores Genéticos/genética , Integrases/genética , Transfecção/métodos , Animais , Feminino , Células HEK293 , Humanos , Integrases/metabolismo , Camundongos
18.
Nat Protoc ; 10(11): 1860-1896, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26492141

RESUMO

To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1-2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks.


Assuntos
Histocitoquímica/métodos , Imagem Óptica/métodos , Patologia/métodos , Manejo de Espécimes/métodos , Animais , Detergentes/isolamento & purificação , Lipídeos/isolamento & purificação , Camundongos , Ratos , Coloração e Rotulagem/métodos , Fatores de Tempo , Inclusão do Tecido/métodos , Fixação de Tecidos/métodos
19.
Front Microbiol ; 6: 1425, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779119

RESUMO

Hydrothermal vents are an important contributor to marine biogeochemistry, producing large volumes of reduced fluids, gasses, and metals and housing unique, productive microbial and animal communities fueled by chemosynthesis. Methane is a common constituent of hydrothermal vent fluid and is frequently consumed at vent sites by methanotrophic bacteria that serve to control escape of this greenhouse gas into the atmosphere. Despite their ecological and geochemical importance, little is known about the ecophysiology of uncultured hydrothermal vent-associated methanotrophic bacteria. Using metagenomic binning techniques, we recovered and analyzed a near-complete genome from a novel gammaproteobacterial methanotroph (B42) associated with a white smoker chimney in the Southern Lau basin. B42 was the dominant methanotroph in the community, at ∼80x coverage, with only four others detected in the metagenome, all on low coverage contigs (7x-12x). Phylogenetic placement of B42 showed it is a member of the Methylothermaceae, a family currently represented by only one sequenced genome. Metabolic inferences based on the presence of known pathways in the genome showed that B42 possesses a branched respiratory chain with A- and B-family heme copper oxidases, cytochrome bd oxidase and a partial denitrification pathway. These genes could allow B42 to respire over a wide range of oxygen concentrations within the highly dynamic vent environment. Phylogenies of the denitrification genes revealed they are the result of separate horizontal gene transfer from other Proteobacteria and suggest that denitrification is a selective advantage in conditions where extremely low oxygen concentrations require all oxygen to be used for methane activation.

20.
Nat Commun ; 5: 4894, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25222271

RESUMO

Probing the neural circuit dynamics underlying behaviour would benefit greatly from improved genetically encoded voltage indicators. The proton pump Archaerhodopsin-3 (Arch), an optogenetic tool commonly used for neuronal inhibition, has been shown to emit voltage-sensitive fluorescence. Here we report two Arch variants with enhanced radiance (Archers) that in response to 655 nm light have 3-5 times increased fluorescence and 55-99 times reduced photocurrents compared with Arch WT. The most fluorescent variant, Archer1, has 25-40% fluorescence change in response to action potentials while using 9 times lower light intensity compared with other Arch-based voltage sensors. Archer1 is capable of wavelength-specific functionality as a voltage sensor under red light and as an inhibitory actuator under green light. As a proof-of-concept for the application of Arch-based sensors in vivo, we show fluorescence voltage sensing in behaving Caenorhabditis elegans. Archer1's characteristics contribute to the goal of all-optical detection and modulation of activity in neuronal networks in vivo.


Assuntos
Potenciais de Ação/fisiologia , Proteínas Arqueais/química , Proteínas de Helminto/química , Proteínas do Tecido Nervoso/química , Neurônios/química , Animais , Proteínas Arqueais/genética , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Expressão Gênica , Proteínas de Helminto/genética , Hipocampo/química , Hipocampo/metabolismo , Luz , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Optogenética/métodos , Técnicas de Patch-Clamp , Cultura Primária de Células , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Ratos , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA