Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2309668, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537163

RESUMO

Tin-based perovskite solar cells (PSCs) are promising environmentally friendly alternatives to their lead-based counterparts, yet they currently suffer from much lower device performance. Due to variations in the chemical properties of lead (II) and tin (II) ions, similar treatments may yield distinct effects resulting from differences in underlying mechanisms. In this work, a surface treatment on tin-based perovskite is conducted with a commonly employed ligand, iso-butylammonium iodide (iso-BAI). Unlike the passivation effects previously observed in lead-based perovskites, such treatment leads to the recrystallization of the surface, driven by the higher solubility of tin-based perovskite in common solvents. By carefully designing the solvent composition, the perovskite surface is effectively modified while preserving the integrity of the bulk. The treatment led to enhanced surface crystallinity, reduced surface strain and defects, and improved charge transport. Consequently, the best-performing power conversion efficiency of FASnI3 PSCs increases from 11.8% to 14.2%. This work not only distinguishes the mechanism of surface treatments in tin-based perovskites from that of lead-based counterparts, but also underscores the critical role in designing tailor-made strategies for fabricating efficient tin-based PSCs.

2.
Adv Mater ; 33(51): e2105290, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34605066

RESUMO

Metal halide perovskites are of fundamental interest in the research of modern thin-film optoelectronic devices, owing to their widely tunable optoelectronic properties and solution processability. To obtain high-quality perovskite films and ultimately high-performance perovskite devices, it is crucial to understand the film formation mechanisms, which, however, remains a great challenge, due to the complexity of perovskite composition, dimensionality, and processing conditions. Nevertheless, the state-of-the-art in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) technique enables one to bridge the complex information with device performance by revealing the crystallization pathways during the perovskite film formation process. In this review, the authors illustrate how to obtain and understand in situ GIWAXS data, summarize and assess recent results of in situ GIWAXS studies on versatile perovskite photovoltaic systems, aiming at elucidating the distinct features and common ground of film formation mechanisms, and shedding light on future opportunities of employing in situ GIWAXS to study the fundamental working mechanisms of highly efficient and stable perovskite solar cells toward mass production.

3.
Nat Commun ; 12(1): 6226, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711821

RESUMO

The bulk morphology of the active layer of organic solar cells (OSCs) is known to be crucial to the device performance. The thin film device structure breaks the symmetry into the in-plane direction and out-of-plane direction with respect to the substrate, leading to an intrinsic anisotropy in the bulk morphology. However, the characterization of out-of-plane nanomorphology within the active layer remains a grand challenge. Here, we utilized an X-ray scattering technique, Grazing-incident Transmission Small-angle X-ray Scattering (GTSAXS), to uncover this new morphology dimension. This technique was implemented on the model systems based on fullerene derivative (P3HT:PC71BM) and non-fullerene systems (PBDBT:ITIC, PM6:Y6), which demonstrated the successful extraction of the quantitative out-of-plane acceptor domain size of OSC systems. The detected in-plane and out-of-plane domain sizes show strong correlations with the device performance, particularly in terms of exciton dissociation and charge transfer. With the help of GTSAXS, one could obtain a more fundamental perception about the three-dimensional nanomorphology and new angles for morphology control strategies towards highly efficient photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA