Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Adv Sci (Weinh) ; 11(21): e2306486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588050

RESUMO

Nucleosome assembly proteins (NAPs) have been identified as histone chaperons. Testis-Specific Protein, Y-Encoded-Like (TSPYL) is a newly arisen NAP family in mammals. TSPYL2 can be transcriptionally induced by DNA damage and TGFß causing proliferation arrest. TSPYL1, another TSPYL family member, has been poorly characterized and is the only TSPYL family member known to be causal of a lethal recessive disease in humans. This study shows that TSPYL1 and TSPYL2 play an opposite role in TGFß signaling. TSPYL1 partners with the transcription factor FOXA1 and histone methyltransferase EZH2, and at the same time represses TGFBR1 and epithelial-mesenchymal transition (EMT). Depletion of TSPYL1 increases TGFBR1 expression, upregulates TGFß signaling, and elevates the protein stability of TSPYL2. Intriguingly, TSPYL2 forms part of the SMAD2/3/4 signal transduction complex upon stimulation by TGFß to execute the transcriptional responses. Depletion of TSPYL2 rescues the EMT phenotype of TSPYL1 knockdown in A549 lung carcinoma cells. The data demonstrates the prime role of TSPYL2 in causing the dramatic defects in TSPYL1 deficiency. An intricate counter-balancing role of TSPYL1 and TSPYL2 in regulating TGFß signaling is also unraveled.


Assuntos
Receptor do Fator de Crescimento Transformador beta Tipo I , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral
2.
Cell Death Dis ; 14(3): 197, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918555

RESUMO

Females have a lower probability to develop somatic cancers and a better response to chemotherapy than males. However, the reasons for these differences are still not well understood. The X-linked gene TSPY-Like 2 (TSPYL2) encodes for a putative tumor suppressor protein involved in cell cycle regulation and DNA damage response (DDR) pathways. Here, we demonstrate that in unstressed conditions TSPYL2 is maintained at low levels by MDM2-dependent ubiquitination and proteasome degradation. Upon genotoxic stress, E2F1 promotes TSPYL2 expression and protein accumulation in non-transformed cell lines. Conversely, in cancer cells, TSPYL2 accumulates only in females or in those male cancer cells that lost the Y-chromosome during the oncogenic process. Hence, we demonstrate that while TSPYL2 mRNA is induced in all the tested tumor cell lines after DNA damage, TSPYL2 protein stability is increased only in female cancer cells. Indeed, we found that TSPYL2 accumulation, in male cancer cells, is prevented by the Y-encoded protein SRY, which modulates MDM2 protein levels. In addition, we demonstrated that TSPYL2 accumulation is required to sustain cell growth arrest after DNA damage, possibly contributing to protect normal and female cancer cells from tumor progression. Accordingly, TSPYL2 has been found more frequently mutated in female-specific cancers. These findings demonstrate for the first time a sex-specific regulation of TSPYL2 in the DDR of cancer cells and confirm the existence of sexual dimorphism in DNA surveillance pathways.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Neoplasias , Feminino , Humanos , Masculino , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Dano ao DNA/genética , Neoplasias/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Ligação a DNA/genética
3.
J Biol Chem ; 296: 100374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33548228

RESUMO

The recent discovery of the cancer-associated E76K mutation in histone H2B (H2BE76-to-K) in several types of cancers revealed a new class of oncohistone. H2BE76K weakens the stability of histone octamers, alters gene expression, and promotes colony formation. However, the mechanism linking the H2BE76K mutation to cancer development remains largely unknown. In this study, we knock in the H2BE76K mutation in MDA-MB-231 breast cancer cells using CRISPR/Cas9 and show that the E76K mutant histone H2B preferentially localizes to genic regions. Interestingly, genes upregulated in the H2BE76K mutant cells are enriched for the E76K mutant H2B and are involved in cell adhesion and proliferation pathways. We focused on one H2BE76K target gene, ADAM19 (a disintegrin and metalloproteinase-domain-containing protein 19), a gene highly expressed in various human cancers including breast invasive carcinoma, and demonstrate that H2BE76K directly promotes ADAM19 transcription by facilitating efficient transcription along the gene body. ADAM19 depletion reduced the colony formation ability of the H2BE76K mutant cells, whereas wild-type MDA-MB-231 cells overexpressing ADAM19 mimics the colony formation phenotype of the H2BE76K mutant cells. Collectively, our data demonstrate the mechanism by which H2BE76K deregulates the expression of genes that control oncogenic properties through a combined effect of its specific genomic localization and nucleosome destabilization effect.


Assuntos
Proteínas ADAM/genética , Neoplasias da Mama/genética , Histonas/genética , Proteínas ADAM/metabolismo , Neoplasias da Mama/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Histonas/metabolismo , Humanos , Mutação/genética , Nucleossomos , Oncogenes/genética , Polimorfismo de Nucleotídeo Único/genética
4.
F S Sci ; 1(2): 115-123, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35559922

RESUMO

OBJECTIVE: To determine the importance of testis-specific, Y-encoded-like 1 (TSPYL1) in survival and male factor fertility in mice. DESIGN: Experimental prospective study. SETTING: Research laboratories in a university medical faculty. ANIMALS: We generated Tspyl1 knockout (KO) mouse lines by CRISPR/Cas9. The lines were maintained by pairing heterozygous mice to provide wild-type control and KO males for comparison. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Mendelian ratio, body and testis weight, histology, sperm motility, mating tests, pregnancy outcome, transcript levels of genes for testosterone production, and serum testosterone level. RESULT(S): A variable percentage of Tspyl1 KO mice survived beyond weaning depending on the genetic background. Growth around weaning was retarded in KO mice, but the testes-to-body weight ratio remained normal and complete spermatogenesis was revealed in testis histology. Sperm was collected from the cauda epididymis, and a significantly smaller percentage of sperm was progressively motile (22.3% ± 18.3%, n = 14 samples) compared with wild type (58.9% ± 11.5%, 11 samples). All 11 KO mice tested had defective mounting behavior. From 11 KO males paired with a total of 88 females, only one litter was born, compared with 53 litters sired by 11 age-matched wild-type males. Expression of Star, Cyp11a1, Cyp17a1, Hsd3b6, and Hsd17b3 in the KO testis was significantly reduced, while serum testosterone level was within the normal range. CONCLUSION(S): TSPYL1 is critical for survival and reproductive success in mice. TSPYL1 enhances the expression of key steroidogenic genes in the mouse testis.

5.
Transl Psychiatry ; 9(1): 244, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582721

RESUMO

LRRC7 has been identified as a candidate gene for severe childhood emotional dysregulation. Direct experimental evidence for a role of LRRC7 in the disease is needed, as is a better understanding of its impact on neuronal structure and signaling, and hence potential treatment targets. Here, we generated and analyzed an Lrrc7 mutant mouse line. Consistent with a critical role of LRRC7 in emotional regulation, mutant mice had inappropriate juvenile aggressive behavior and significant anxiety-like behavior and social dysfunction in adulthood. The pivotal role of mGluR5 signaling was demonstrated by rescue of behavioral defects with augmentation of mGluR5 receptor activity by 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB). Intra-peritoneal injection of CDPPB alleviated abnormal juvenile behavior, as well as anxiety-like behavior and hypersociability at adulthood. Furthermore, mutant primary neurons had impaired neurite outgrowth which was rescued by CDPPB treatment. In conclusion, Lrrc7 mutant mice provide a valuable tool to model childhood emotional dysregulation and persistent mental health comorbidities. Moreover, our data highlight an important role of LRRC7 in mGluR5 signaling, which is a potential new treatment target for anxiety and social dysfunction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacologia , Neurônios/fisiologia , Pirazóis/farmacologia , Receptor de Glutamato Metabotrópico 5/fisiologia , Sialoglicoproteínas/genética , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Mutação , Transdução de Sinais
6.
Biochem Biophys Res Commun ; 512(1): 22-28, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30853177

RESUMO

The C-terminal Ig-domain of lamin A plays critical roles in cell function via interaction with proteins, DNA, and chromatin. Mutations in this domain are known to cause various diseases including Emery-Dreifuss muscular dystrophy (EDMD) and familial partial lipodystrophy (FPLD). Here we examined the biophysical and biochemical properties of mutant Ig-domains identified in patients with EDMD and FPLD. EDMD-related mutant Ig-domain showed decreased stability to heat and denaturant. This result was also confirmed by experiments using full-length mutant lamin A, although the decrease in melting temperature was much less than that of the mutant Ig-domain alone. The unstable EDMD Ig-domain disrupted the proper assembly of lamin A, resulting in abnormal paracrystal formation and decreased viscosity. In contrast, FPLD-related mutant Ig-domains were thermally stable, although they lost DNA binding function. Alanine substitution experiments revealed a functional domain of DNA binding in the Ig-domain. Thus, the overall biophysical property of Ig-domains is closely associated with clinical phenotype.


Assuntos
Lamina Tipo A/química , Distrofia Muscular de Emery-Dreifuss/metabolismo , Substituição de Aminoácidos , Fenômenos Biofísicos , DNA/química , DNA/metabolismo , Humanos , Técnicas In Vitro , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Distrofia Muscular de Emery-Dreifuss/genética , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios Proteicos , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Cell Death Differ ; 26(5): 918-931, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30050056

RESUMO

Protein acetylation and deacetylation events are finely regulated by lysine-acetyl-transferases and lysine-deacetylases and constitute an important tool for the activation or inhibition of specific cellular pathways. One of the most important lysine-acetyl-transferases is p300, which is involved in the regulation of gene expression, cell growth, DNA repair, differentiation, apoptosis, and tumorigenesis. A well-known target of p300 is constituted by the tumor suppressor protein p53, which plays a critical role in the maintenance of genomic stability and whose activity is known to be controlled by post-translational modifications, among which acetylation. p300 activity toward p53 is negatively regulated by the NAD-dependent deacetylase SIRT1, which deacetylates p53 preventing its transcriptional activation and the induction of p53-dependent apoptosis. However, the mechanisms responsible for p53 regulation by p300 and SIRT1 are still poorly understood. Here we identify the nucleosome assembly protein TSPY-Like 2 (TSPYL2, also known as TSPX, DENTT, and CDA1) as a novel regulator of SIRT1 and p300 function. We demonstrate that, upon DNA damage, TSPYL2 inhibits SIRT1, disrupting its association with target proteins, and promotes p300 acetylation and activation, finally stimulating p53 acetylation and p53-dependent cell death. Indeed, in response to DNA damage, cells silenced for TSPYL2 were found to be defective in p53 activation and apoptosis induction and these events were shown to be dependent on SIRT1 and p300 function. Collectively, our results shed new light on the regulation of p53 acetylation and activation and reveal a novel TSPYL2 function with important implications in cancerogenesis.


Assuntos
Proteína p300 Associada a E1A/genética , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Sirtuína 1/genética , Proteína Supressora de Tumor p53/genética , Células A549 , Acetilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , Proliferação de Células/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Etoposídeo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Processamento de Proteína Pós-Traducional/genética , Ativação Transcricional/efeitos dos fármacos , Gencitabina
8.
Mol Neurobiol ; 56(4): 2640-2652, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30051352

RESUMO

Testis-specific protein, Y-encoded-like 2 (TSPYL2) is an X-linked gene in the locus for several neurodevelopmental disorders. We have previously shown that Tspyl2 knockout mice had impaired learning and sensorimotor gating, and TSPYL2 facilitates the expression of Grin2a and Grin2b through interaction with CREB-binding protein. To identify other genes regulated by TSPYL2, here, we showed that Tspyl2 knockout mice had an increased level of H3K27 trimethylation (H3K27me3) in the hippocampus, and TSPYL2 interacted with the H3K27 methyltransferase enhancer of zeste 2 (EZH2). We performed chromatin immunoprecipitation (ChIP)-sequencing in primary hippocampal neurons and divided all Refseq genes by k-mean clustering into four clusters from highest level of H3K27me3 to unmarked. We confirmed that mutant neurons had an increased level of H3K27me3 in cluster 1 genes, which consist of known EZH2 target genes important in development. We detected significantly reduced expression of genes including Gbx2 and Prss16 from cluster 1 and Acvrl1, Bdnf, Egr3, Grin2c, and Igf1 from cluster 2 in the mutant. In support of a dynamic role of EZH2 in repressing marked synaptic genes, the specific EZH2 inhibitor GSK126 significantly upregulated, while the demethylase inhibitor GSKJ4 downregulated the expression of Egr3 and Grin2c. GSK126 also upregulated the expression of Bdnf in mutant primary neurons. Finally, ChIP showed that hemagglutinin-tagged TSPYL2 co-existed with EZH2 in target promoters in neuroblastoma cells. Taken together, our data suggest that TSPYL2 is recruited to promoters of specific EZH2 target genes in neurons, and enhances their expression for proper neuronal maturation and function.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas de Ciclo Celular , Ontologia Genética , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Metilação , Camundongos , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transcrição Gênica
9.
Behav Genet ; 46(4): 529-37, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26826030

RESUMO

Testis specific protein, Y-encoded-like 2 (TSPYL2) regulates the expression of genes encoding glutamate receptors. Glutamate pathology is implicated in neurodevelopmental conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD) and schizophrenia. In line with this, a microduplication incorporating the TSPYL2 locus has been reported in people with ADHD. However, the role of Tspyl2 remains unclear. Therefore here we used a Tspyl2 loss-of-function mouse model to directly examine how this gene impacts upon behavior and brain anatomy. We hypothesized that Tspyl2 knockout (KO) would precipitate a phenotype relevant to neurodevelopmental conditions. In line with this prediction, we found that Tspyl2 KO mice were marginally more active, had significantly impaired prepulse inhibition, and were significantly more 'sensitive' to the dopamine agonist amphetamine. In addition, the lateral ventricles were significantly smaller in KO mice. These findings suggest that disrupting Tspyl2 gene expression leads to behavioral and brain morphological alterations that mirror a number of neurodevelopmental psychiatric traits.


Assuntos
Encéfalo/anormalidades , Encéfalo/crescimento & desenvolvimento , Proteínas Nucleares/metabolismo , Anfetamina/administração & dosagem , Anfetamina/farmacologia , Animais , Comportamento Animal , Proteínas de Ciclo Celular , Ventrículos Cerebrais/efeitos dos fármacos , Ventrículos Cerebrais/patologia , Relações Interpessoais , Imageamento por Ressonância Magnética , Masculino , Camundongos Knockout , Atividade Motora , Proteínas Nucleares/deficiência , Inibição Pré-Pulso , Cloreto de Sódio/administração & dosagem , Cloreto de Sódio/farmacologia
10.
Sci Rep ; 4: 3654, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24413569

RESUMO

TSPYL2 is an X-linked gene encoding a nucleosome assembly protein. TSPYL2 interacts with calmodulin-associated serine/threonine kinase, which is implicated in X-linked mental retardation. As nucleosome assembly and chromatin remodeling are important in transcriptional regulation and neuronal function, we addressed the importance of TSPYL2 through analyzing Tspyl2 loss-of-function mice. We detected down-regulation of N-methyl-D-aspartate receptor subunits 2A and 2B (GluN2A and GluN2B) in the mutant hippocampus. Evidence from luciferase reporter assays and chromatin immunoprecipitation supported that TSPYL2 regulated the expression of Grin2a and Grin2b, the genes encoding GluN2A and GluN2B. We also detected an interaction between TSPYL2 and CBP, indicating that TSPYL2 may activate gene expression through binding CBP. In terms of functional outcome, Tspyl2 loss-of-function impaired long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, mutant mice showed a deficit in fear learning and memory. We conclude that TSPYL2 contributes to cognitive variability through regulating the expression of Grin2a and Grin2b.


Assuntos
Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Animais , Proteínas de Ligação a DNA , Medo , Feminino , Hipocampo/metabolismo , Aprendizagem , Potenciação de Longa Duração/genética , Masculino , Memória , Camundongos , Mutação , Proteínas Nucleares/genética , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ativação Transcricional
11.
Neurosci Lett ; 547: 21-5, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23669645

RESUMO

Epidermal growth factor (EGF) and its family member neuregulin-1 are implicated in the etiology of schizophrenia. Our recent pharmacological studies indicate that EGF injections to neonatal and adult rats both induce neurobehavioral deficits relevant to schizophrenia. We, however, did not evaluate the genetic impact of EGF transgene on neurobehavioral traits. Here we analyzed transgenic mice carrying the transgene of mouse EGF cDNA. As compared to control littermates, heterozygous EGF transgenic mice had an increase in EGF mRNA levels and showed significant decreases in prepulse inhibition and context-dependent fear learning, but there were no changes in locomotor behaviors and sound startle responses. In addition, these transgenic mice exhibited higher behavioral sensitivity to the repeated cocaine injections. There were neurochemical alterations in metabolic enzymes of dopamine (i.e., tyrosine hydroxylase, dopa decarboxylase, catechol-O-methyl transferase) and monoamine contents in various brain regions of the EGF transgenic mice, but there were no apparent neuropathological signs in the brain. The present findings rule out the indirect influence of anti-EGF antibody production on the reported behavioral deficits of EGF-injected mice. These results support the argument that aberrant hyper-signals of EGF have significant impact on mouse behavioral traits and dopamine metabolism.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Dopamina/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Animais , Sequência de Bases , Fator de Crescimento Epidérmico/genética , Immunoblotting , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Transgenes
12.
PLoS One ; 8(2): e57194, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468933

RESUMO

The G-protein coupled receptor (GPCR), Cysteine (C)-X-C Receptor 4 (CXCR4), plays an important role in prostate cancer metastasis. CXCR4 is generally regarded as a plasma membrane receptor where it transmits signals that support transformation, progression and eventual metastasis. Due to the central role of CXCR4 in tumorigenesis, therapeutics approaches such as antagonist and monoclonal antibodies have focused on receptors that exist on the plasma membrane. An emerging concept for G-protein coupled receptors is that they may localize to and associate with the nucleus where they retain function and mediate nuclear signaling. Herein, we demonstrate that CXCR4 associated with the nucleus of malignant prostate cancer tissues. Likewise, expression of CXCR4 was detected in nuclear fractions among several prostate cancer cell lines, compared to normal prostate epithelial cells. Our studies identified a nuclear pool of CXCR4 and we defined a nuclear transport pathway for CXCR4. We reveal a putative nuclear localization sequence (NLS), 'RPRK', within CXCR4 that contributed to nuclear localization. Additionally, nuclear CXCR4 interacted with Transportinß1 and Transportinß1-binding to CXCR4 promoted its nuclear translocation. Importantly, Gαi immunoprecipitation and calcium mobilization studies indicated that nuclear CXCR4 was functional and participated in G-protein signaling, revealing that the nuclear pool of CXCR4 retained function. Given the suggestion that functional, nuclear CXCR4 may be a mechanism underlying prostate cancer recurrence, increased metastatic ability and poorer prognosis after tumors have been treated with therapy that targets plasma membrane CXCR4, these studies addresses a novel mechanism of nuclear signaling for CXCR4, a novel mechanism of clinical targeting, and demonstrate an active nuclear pool that provides important new information to illuminate what has been primarily clinical reports of nuclear CXCR4.


Assuntos
Núcleo Celular/metabolismo , Carioferinas/metabolismo , Neoplasias da Próstata/metabolismo , Receptores CXCR4/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Humanos , Imuno-Histoquímica , Masculino , Dados de Sequência Molecular , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Interferente Pequeno , Receptores CXCR4/química
13.
PLoS One ; 7(7): e41802, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848613

RESUMO

BACKGROUND: Dravet syndrome is a severe form of epilepsy. Majority of patients have a mutation in SCN1A gene, which encodes a voltage-gated sodium channel. A recent study has demonstrated that 16% of SCN1A-negative patients have a mutation in PCDH19, the gene encoding protocadherin-19. Mutations in other genes account for only a very small proportion of families. TSPYL4 is a novel candidate gene within the locus 6q16.3-q22.31 identified by linkage study. OBJECTIVE: The present study examined the mutations in epileptic Chinese children with emphasis on Dravet syndrome. METHODS: A hundred children with severe epilepsy were divided into Dravet syndrome and non-Dravet syndrome groups and screened for SCN1A mutations by direct sequencing. SCN1A-negative Dravet syndrome patients and patients with phenotypes resembling Dravet syndrome were checked for PCDH19 and TSPYL4 mutations. RESULTS: Eighteen patients (9 males, 9 females) were diagnosed to have Dravet syndrome. Among them, 83% (15/18) had SCN1A mutations including truncating (7), splice site (2) and missense mutations (6). The truncating/splice site mutations were associated with moderate to severe degree of intellectual disability (p<0.05). During the progression of disease, 73% (11/15) had features fitting into the diagnostic criteria of autism spectrum disorder and 53% (8/15) had history of vaccination-induced seizures. A novel PCDH19 p.D377N mutation was identified in one SCN1A-negative female patient with Dravet syndrome and a known PCDH19 p.N340S mutation in a female non-Dravet syndrome patient. The former also inherited a TSPYL4 p.G60R variant. CONCLUSION: A high percentage of SCN1A mutations was identified in our Chinese cohort of Dravet syndrome patients but none in the rest of patients. We demonstrated that truncating/splice site mutations were linked to moderate to severe intellectual disability in these patients. A de novo PCDH19 missense mutation together with an inherited TSPYL4 missense variant were identified in a patient with Dravet syndrome.


Assuntos
Povo Asiático/genética , Caderinas/genética , Análise Mutacional de DNA , Epilepsias Mioclônicas/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adolescente , Sequência de Aminoácidos , Animais , Sequência de Bases , Caderinas/química , Criança , Pré-Escolar , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/diagnóstico , Feminino , Humanos , Lactente , Deficiência Intelectual/complicações , Masculino , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.1/química , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fenótipo , Polimorfismo Genético/genética , Protocaderinas , Sítios de Splice de RNA/genética
14.
PLoS One ; 6(6): e21602, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21738728

RESUMO

Nucleosome assembly proteins play important roles in chromatin remodeling, which determines gene expression, cell proliferation and terminal differentiation. Testis specific protein, Y-encoded-like 2 (TSPYL2) is a nucleosome assembly protein expressed in neuronal precursors and mature neurons. Previous studies have shown that TSPYL2 binds cyclin B and inhibits cell proliferation in cultured cells suggesting a role in cell cycle regulation. To investigate the physiological significance of TSPYL2 in the control of cell cycle, we generated mice with targeted disruption of Tspyl2. These mutant mice appear grossly normal, have normal life span and do not exhibit increased tumor incidence. To define the role of TSPYL2 in DNA repair, checkpoint arrest and apoptosis, primary embryonic fibroblasts and thymocytes from Tspyl2 deficient mice were isolated and examined under unperturbed and stressed conditions. We show that mutant fibroblasts are impaired in G1 arrest under the situation of DNA damage induced by gamma irradiation. This is mainly attributed to the defective activation of p21 transcription despite proper p53 protein accumulation, suggesting that TSPYL2 is additionally required for p21 induction. TSPYL2 serves a biological role in maintaining the G1 checkpoint under stress condition.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Northern Blotting , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Células Cultivadas , Dano ao DNA/genética , Dano ao DNA/fisiologia , Citometria de Fluxo , Fase G1/genética , Fase G1/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout
15.
PLoS One ; 6(5): e20507, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21655223

RESUMO

SUN2 is an inner nuclear membrane protein with a conserved Sad1/UNC-84 homology SUN-domain at the C-terminus. Intriguingly, SUN2 has also been reported to interact with Rab5, which localizes in early endosomes. To clarify the dual subcellular localization of SUN2, we investigated its localization in lamin A/C deficient cells rescued with lamin A or lamin C isoform, and in HeLa cells transfected with Rab5 or its mutants. We found that expression of lamin A but not lamin C partly restored the nuclear envelope localization of SUN2. SUN2 was redistributed to endosomes upon overexpression of Rab5, but remained on the nuclear envelope when the SUN domain was deleted. To explore the physiological function of SUN2 in vesicle trafficking and endocytosis, we demonstrated the colocalization of endogenous SUN2 and Rab5. Moreover, overexpression of SUN2 stimulated the uptake of transferrin while suppression of SUN2 expression attenuated the process. These findings support a role of SUN2 in endocytosis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lamina Tipo A/genética , Proteínas de Membrana/genética , Proteínas rab5 de Ligação ao GTP/genética
16.
J Neurosci Res ; 83(1): 80-90, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16294336

RESUMO

The c-ret protooncogene, RET, encodes a receptor tyrosine kinase. RET is activated by members of the glial cell line-derived neurotrophic factor (GDNF) family of ligands, which include GDNF, neurturin, artemin, and persephin. The ligands bind RET through GDNF family receptor alpha, termed GFRalpha1-4. Despite the importance of RET signaling in the development of the enteric nervous system and the kidney, the differential signaling mechanisms between RET ligands are poorly established. It has been suggested that signal specificity is achieved through binding of the ligand to its preferred GFRalpha. To compare the signaling profiles of GDNF and neurturin, we have identified a cell line, NG108-15, which endogenously expresses RET and GFRalpha1 but not GFRalpha2-4. Immunoblot data showed that GDNF caused a transient activation, whereas neurturin caused a sustained activation, of both p44/p42 MAP kinases and PLCgamma. Under serum starvation, NG108-15 cells differentiate and form neurites. Neurturin but not GDNF stimulated neurite outgrowth, which could be blocked by the selective PLC inhibitor U73122. On the other hand, GDNF but not neurturin promoted cell survival, and this could be blocked by the p44/p42 MAP kinase inhibitor PD98059. Our findings not only show the differential signaling of GDNF and neurturin but also suggest that this can be achieved through binding to the same GFRalpha subtype, leading to distinct biological responses.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Neurônios/fisiologia , Neurturina/farmacologia , Proteínas Proto-Oncogênicas c-ret/fisiologia , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Immunoblotting , Ligantes , Proteína Quinase 3 Ativada por Mitógeno/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-ret/genética , RNA/biossíntese , RNA/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Tirosina/metabolismo
17.
Chin Med J (Engl) ; 116(9): 1329-32, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14527359

RESUMO

OBJECTIVE: To identify genes expressed in the fetal heart that are potentially important for myocardial development and cardiomyocyte proliferation. METHODS: mRNAs from fetal (29 weeks) and adult cardiomyocytes were use for suppression subtractive hybridization (SSH). Both forward (fetal as tester) and reverse (adult as driver) subtractions were performed. Clones confirmed by dot-blot analysis to be differentially expressed were sequenced and analyzed. RESULTS: Differential expressions were detected for 39 out of 96 (41%) clones on forward subtraction and 24 out of 80 (30%) clones on reverse. For fetal dominating genes, 28 clones matched to 10 known genes (COL1A2, COL3A1, endomucin, HBG1, HBG2, PCBP2, LOC51144, TGFBI, vinculin and PND), 9 clones to 5 cDNAs of unknown functions (accession AK021715, AF085867, AB040948, AB051460 and AB051512) and 2 clones had homology to hEST sequences. For the reverse subtraction, all clones showed homology to mitochondrial transcripts. CONCLUSIONS: We successfully applied SSH to detect those genes differentially expressed in fetal cardiac myocytes, some of which have not been shown relative to myocardial development.


Assuntos
Expressão Gênica/fisiologia , Coração/embriologia , Fatores de Transcrição , Idoso , Células Cultivadas , Colágeno , Colágeno Tipo I , Colágeno Tipo III/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead , Coração/crescimento & desenvolvimento , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Proteínas do Tecido Nervoso/genética , Hibridização de Ácido Nucleico , Proteínas de Ligação a RNA , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1 , Vinculina/genética
18.
J Biol Chem ; 278(28): 26120-6, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12714603

RESUMO

The hair growth cycle consists of three stages known as the anagen (growing), catagen (involution), and telogen (resting) phases. This cyclical growth of hair is regulated by a diversity of growth factors. Although normal expression of both epidermal growth factor and its receptor (EGFR) in the outer root sheath is down-regulated with the completion of follicular growth, here we show that continuous expression of epidermal growth factor in hair follicles of transgenic mice arrested follicular development at the final stage of morphogenesis. Data from immunoprecipitation and immunoblotting showed that epidermal growth factor signals through EGFR/ErbB2 heterodimers in skin. Furthermore, topical application of tyrphostin AG1478 or AG825, specific inhibitors of EGFR and ErbB2, respectively, completely inhibited new hair growth in wild type mice but not in transgenic mice. When the transgenic mice were crossed with waved-2 mice, which possess a lower kinase activity of EGFR, the hair phenotype was rescued in the offspring. Taken together, these data suggest that EGFR signaling is indispensable for the initiation of hair growth. On the other hand, continuous expression of epidermal growth factor prevents entry into the catagen phase. We propose that epidermal growth factor functions as a biologic switch that is turned on and off in hair follicles at the beginning and end of the anagen phase of the hair cycle, guarding the entry to and exit from the anagen phase.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Animais , Divisão Celular , Dimerização , Cabelo/metabolismo , Folículo Piloso/fisiologia , Heterozigoto , Immunoblotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Fenótipo , Fosforilação , Testes de Precipitina , Quinazolinas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fenômenos Fisiológicos da Pele , Fatores de Tempo , Tirfostinas/farmacologia
19.
Oncogene ; 21(36): 5582-92, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12165857

RESUMO

The RET proto-oncogene encodes two major isoforms, RET9 and RET51, which differ at the carboxyl-terminal. Loss-of-function mutations in RET result in gut aganglionosis while gain of function mutations result in cancer syndromes. From studies on transgenic mice, RET9 is important for early development of the kidney and the enteric nervous system. Little is known about the function of RET isoforms in later life. Here we report the expression of RET isoforms and its signalling complex, GDNF and GFRalpha1, in foetal and adult human kidneys. We found their expression in both the developing and the adult renal collecting system. We further show that only RET51 but not RET9 could promote the survival and tubulogenesis of mIMCD3 (mouse inner medullary collecting duct) cells in collagen gel. Our results agree with the hypothesis that RET51 signalling is related to differentiation events in later kidney organogenesis. In addition, it may also have a function in the adult kidney. We further extend our study by showing increased RET and GDNF expression in collecting duct cysts of polycystic kidney patients. This suggests that GDNF/RET signalling may contribute to proliferation of the collecting duct epithelium in an autocrine/paracrine manner.


Assuntos
Proteínas de Drosophila , Rim/enzimologia , Fatores de Crescimento Neural , Rim Policístico Autossômico Dominante/enzimologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Idoso , Processamento Alternativo , Western Blotting , Divisão Celular/fisiologia , Células Cultivadas/metabolismo , Colágeno/química , Primers do DNA/química , Desenvolvimento Embrionário e Fetal , Epitélio/metabolismo , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Humanos , Técnicas Imunoenzimáticas , Hibridização In Situ , Isoenzimas , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Rim Policístico Autossômico Dominante/patologia , Testes de Precipitina , Gravidez , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ret , Sondas RNA , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA