Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
TH Open ; 8(1): e81-e92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38313596

RESUMO

Inflammation and thrombosis are two distinct yet interdependent physiological processes. The inflammation results in the activation of the coagulation system that directs the immune system and its activation, resulting in the initiation of the pathophysiology of thrombosis, a process termed immune-thrombosis. Still, the shared underlying molecular mechanism related to the immune system and coagulation has not yet been explored extensively. Inspired to answer this, we carried out a comprehensive gene expression meta-analysis using publicly available datasets of four diseases, including venous thrombosis, systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. A total of 609 differentially expressed genes (DEGs) shared by all four datasets were identified based on the combined effect size approach. The pathway enrichment analysis of the DEGs showed enrichment of various epigenetic pathways such as histone-modifying enzymes, posttranslational protein modification, chromatin organization, chromatin-modifying enzymes, HATs acetylate proteins. Network-based protein-protein interaction analysis showed epigenetic enzyme coding genes dominating among the top hub genes. The miRNA-interacting partner of the top 10 hub genes was determined. The predomination of epitranscriptomics regulation opens a layout for the meta-analysis of miRNA datasets of the same four diseases. We identified 30 DEmiRs shared by these diseases. There were 9 common DEmiRs selected from the list of miRNA-interacting partners of top 10 hub genes and shared significant DEmiRs from microRNAs dataset acquisition. These common DEmiRs were found to regulate genes involved in epigenetic modulation and indicate a promising epigenetic aspect that needs to be explored for future molecular studies in the context of immunothrombosis and inflammatory disease.

2.
J Biochem Mol Toxicol ; 37(11): e23476, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37466159

RESUMO

Daboxin P, reported earlier from the venom of Daboia russellii, disturbs the blood coagulation cascade by targeting factor X and factor Xa. The present study exhibits that Daboxin P also inhibits platelet aggregation induced by various agonists. The thrombin-induced platelet aggregation was inhibited maximum whereas inhibition of collagen-induced platelet aggregation was found to be 50% and no inhibition of adenosine diphosphate (ADP) and arachidonic acid-induced aggregation was observed. Daboxin P dose-dependently inhibited the thrombin-induced platelet aggregation with Anti-Aggregation 50 (AD50 ) dose of 55.166 nM and also reduced the thrombin-mediated calcium influx. In-silico interaction studies suggested that Daboxin P binds to thrombin and blocks its interaction with its receptor on the platelet surface. Quenching of thrombin's emission spectrum by Daboxin P and electrophoretic profiles of pull-down assay further reveals the binding between Daboxin P and thrombin. Thus, the present study demonstrates that Daboxin P inhibits thrombin-induced platelet aggregation by binding to thrombin.


Assuntos
Agregação Plaquetária , Trombina , Trombina/farmacologia , Fosfolipases A2/farmacologia , Coagulação Sanguínea , Plaquetas , Venenos de Víboras/farmacologia
3.
TH Open ; 4(4): e403-e412, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33354650

RESUMO

Severe novel corona virus disease 2019 (COVID-19) infection is associated with a considerable activation of coagulation pathways, endothelial damage, and subsequent thrombotic microvascular injuries. These consistent observations may have serious implications for the treatment and management of this highly pathogenic disease. As a consequence, the anticoagulant therapeutic strategies, such as low molecular weight heparin, have shown some encouraging results. Cytokine burst leading to sepsis which is one of the primary reasons for acute respiratory distress syndrome (ARDS) drive that could be worsened with the accumulation of coagulation factors in the lungs of COVID-19 patients. However, the obscurity of this syndrome remains a hurdle in making decisive treatment choices. Therefore, an attempt to characterize shared biological mechanisms between ARDS and thrombosis using comprehensive transcriptomics meta-analysis is made. We conducted an integrated gene expression meta-analysis of two independently publicly available datasets of ARDS and venous thromboembolism (VTE). Datasets GSE76293 and GSE19151 derived from National Centre for Biotechnology Information-Gene Expression Omnibus (NCBI-GEO) database were used for ARDS and VTE, respectively. Integrative meta-analysis of expression data (INMEX) tool preprocessed the datasets and effect size combination with random effect modeling was used for obtaining differentially expressed genes (DEGs). Network construction was done for hub genes and pathway enrichment analysis. Our meta-analysis identified a total of 1,878 significant DEGs among the datasets, which when subjected to enrichment analysis suggested inflammation-coagulation-hypoxemia convolutions in COVID-19 pathogenesis. The top hub genes of our study such as tumor protein 53 (TP53), lysine acetyltransferase 2B (KAT2B), DExH-box helicase 9 (DHX9), REL-associated protein (RELA), RING-box protein 1 (RBX1), and proteasome 20S subunit beta 2 (PSMB2) gave insights into the genes known to be participating in the host-virus interactions that could pave the way to understand the various strategies deployed by the virus to improve its replication and spreading.

4.
Front Cell Dev Biol ; 8: 73, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117993

RESUMO

Inflammasome complex is a multimeric protein comprising of upstream sensor protein of nucleotide-binding oligomerization domain (NOD)-like receptor family. It has an adaptor protein apoptosis-associated speck-like protein and downstream effector cysteine protease procaspase-1. Activation of inflammasome complex is body's innate response to pathogen attack but its abnormal activation results in many inflammatory and cardiovascular disorders including thrombosis. It has displayed a prominent role in the clot formation advocating an interplay between inflammation and coagulation cascades. Therefore, elucidation of inflammasome and its molecular mechanisms in the manifestation of prothrombotic phenotypes becomes pertinent. Thrombosis is the formation and propagation of blood clot in the arterial or venous system due to several interactions of vascular and immune factors. It is a prevalent pathology underlying disorders like venous thromboembolism, stroke and acute coronary syndrome; thus, making thrombosis, a major contributor to the global disease burden. Recently studies have established a strong connection of inflammatory processes with this blood coagulation disorder. The hemostatic balance in thrombosis gets altered by the inflammatory mechanisms resulting in endothelial and platelet activation that subsequently increases secretion of several prothrombotic and antifibrinolytic factors. The upregulation of these factors is the critical event in the pathogenesis of thrombosis. Among various inflammasome, nucleotide-binding domain, leucine-rich-containing family, pyrin domain containing 3 (NLRP3) is one of the best-studied sterile inflammasome strengthening a link between inflammation and coagulation in thrombosis. NLRP3 activation results in the catalytic conversion of procaspase-1 to active caspase-1, which facilitate the maturation of interleukin-1ß (IL-1ß) and interleukin-18. These cytokines are responsible for immune cells activation critical for immune responses. These responses further results in endothelial and platelet activation and aggregation. However, the exact molecular mechanism related to the pathogenesis of thrombosis is still elusive. There have been several reports that demonstrate Tissue factor (TF)-mediated signaling in the production of pro-inflammatory cytokines enhancing inflammation by activating protease-activated receptors on various cells, which lead to additional cytokine expression. Therefore, it would be illuminating to interpret the inflammasomes regulation in coagulation and inflammation. This review, thus, tries to comprehensively compile emerging regulatory roles of the inflammasomes in thrombosis and discusses their molecular pathways in the manifestation of thrombotic phenotypes.

5.
Neurobiol Aging ; 88: 156.e1-156.e9, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035847

RESUMO

Hexanucleotide repeat expansion in C9orf72 is defined as a major causative factor for familial amyotrophic lateral sclerosis (ALS). The mutation frequency varies dramatically among populations of different ethnicity; however, in most cases, C9orf72 mutant has been described on a common founder haplotype. We assessed its frequency in a study cohort involving 593 clinically and electrophysiologically defined ALS cases. We also investigated the presence of reported Finnish haplotype among the mutation carriers. The identified common haplotype region was further screened in 192 (carrying 2-6 G4C2 repeats) and 96 (≥7 repeats) control chromosomes. The G4C2 expansion was observed in 3.2% (19/593) of total cases where 9/19 (47.4%) positive cases belonged to the eastern region of India. Haplotype analysis revealed 11 G4C2-Ex carriers shared the common haplotype (haplo-A) background spanning a region of ∼90 kbp (rs895021-rs11789520) including rs3849942 (a well-known global at-risk loci with T allele for G4C2 expansion). The other 3 G4C2-Ex cases had a different haplotype (haplo-B) with core difference from haplo-A at G4C2-Ex flanking 31 kbp region between rs3849942 and rs11789520 SNPs (allele 'C' of rs3849942 which is a nonrisk allele). Out of other five G4C2-cases, four carried the risk allele T of rs3849942 while one harbored the non-risk allele. This study establishes the prevalence of C9orf72 expansion in Indian ALS cases providing further evidence for geographical predilection. The global core risk haplotype predominated C9orf72 expansion-positive ALS cases, yet the existence of a different haplotype suggests a second lineage (haplo B), which may have been derived from the Finnish core haplotype or may imply a unique haplotype among Asians. The association of risk haplotype with normal intermediate C9orf72 alleles reinforced its role in conferring instability to the C9orf72-G4C2 region. We thus present an effective support to interpret future burden of ALS cases in India.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Estudos de Associação Genética , Mutação , Alelos , Estudos de Coortes , Haplótipos , Heterozigoto , Índia , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA