Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
3.
Sci Rep ; 13(1): 10980, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414804

RESUMO

Portable air purifiers help improve indoor air quality by neutralizing allergens, including animal dander proteins. However, there are limited in-vivo models to assess the efficacy of these devices. Here, we developed a novel animal model of experimental asthma using aerosolized cat dander extract (CDE) exposure and compared the efficacy of select air purification technologies. Mice were exposed to CDE aerosols for 6 weeks in separate custom-built whole-body exposure chambers equipped with either a photoelectrochemical oxidative (PECO) Molekule filtration device (PFD) or a HEPA-assisted air filtration device (HFD) along with positive (a device with no filtration capability) and negative controls. Compared to the positive control group, the CDE-induced airway resistance, and plasma IgE and IL-13 levels were significantly reduced in both air purifier groups. However, PFD mice showed a better attenuation of lung tissue mucous hyperplasia and eosinophilia than HFD and positive control mice, indicating a better efficacy in managing CDE-induced allergic responses. Cat dander protein destruction was evaluated by LCMS proteomic analysis, which revealed the degradation of 2731 unique peptides on PECO media in 1 h. Thus, allergen protein destruction on filtration media enhances air purifier efficacy that could provide relief from allergy responses compared to traditional HEPA-based filtration alone.


Assuntos
Poluição do Ar em Ambientes Fechados , Asma , Hipersensibilidade , Camundongos , Animais , Modelos Animais de Doenças , Alérgenos Animais/metabolismo , Proteômica , Hipersensibilidade/metabolismo , Alérgenos
4.
Am J Pathol ; 193(4): 380-391, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37003622

RESUMO

With the advent of antiretroviral therapy, improved survival of people with HIV (PWH) is accompanied with increased prevalence of HIV-associated comorbidities. Chronic lung anomalies are recognized as one of the most devastating sequelae in PWH. The limited available data describing the lung complications in PWH with a history of opioid abuse warrants more research to better define the course of disease pathogenesis. The current study was conducted to investigate the progression of lung tissue remodeling in a morphine (Mor)-exposed rhesus macaque model of SIV infection. Pathologic features of lung remodeling, including histopathologic changes, oxidative stress, inflammation, and proliferation of fibroblasts, were investigated in archival lung tissues of SIVmac-251/macaque model with or without Mor dependence. Lungs of Mor-exposed, SIV-infected macaques exhibited significant fibrotic changes and collagen deposition in the alveolar and the bronchiolar region. There was increased oxidative stress, profibrotic transforming growth factor-ß, fibroblast proliferation and trans-differentiation, epithelial-mesenchymal transition, and matrix degradation in SIV-infected macaques, which was further exacerbated in the lungs of Mor-exposed macaques. Interestingly, there was decreased inflammation-associated remodeling in Mor-dependent SIV-infected macaques compared with SIV-infected macaques that did not receive Mor. Thus, the current findings suggest that SIV independently induces fibrotic changes in macaque lungs, which is further aggravated by Mor.


Assuntos
Infecções por HIV , Pneumonia , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Macaca mulatta , Infecções por HIV/patologia , Pulmão/patologia , Inflamação/patologia , Pneumonia/patologia , Fibrose , Derivados da Morfina
5.
Toxicol Rep ; 9: 1823-1830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518432

RESUMO

Electronic cigarette (e-cig) aerosol exposures are strongly associated with pulmonary dysfunctions, and the airway epithelial cells (AECs) of respiratory passages play a pivotal role in understanding this association. However, not much is known about the effect of synthetic cooling agents such as WS-23 on AECs. WS-23 is a synthetic menthol-like cooling agent widely used to enhance the appeal of e-cigs and to suppress the harshness and bitterness of other e-cig constituents. Using primary human AECs, we compared the effects of aerosolized WS-23 with propylene glycol/vegetable glycerin (PG/VG) vehicle control and nicotine aerosol exposures. AECs treated with 3 % WS-23 aerosols showed a significant increase in viable cell numbers compared to PG/VG-vehicle aerosol exposed cells and cell growth was comparable following 2.5 % nicotine aerosol exposure. AEC inflammatory factors, IL-6 and ICAM-1 levels were significantly suppressed by WS-23 aerosols compared to PG/VG-controls. When differentiated AECs were challenged with WS-23 aerosols, there was a significant increase in secretory mucin MUC5AC expression with no discernible change in airway inflammatory SCGB1A1 expression. Compared to PG/VG-controls, WS-23 or nicotine aerosols presented with increased MUC5AC expression, but there was no synergistic effect of WS-23 + nicotine combination exposure. Thus, WS-23 and nicotine aerosols modulate the AEC responses and induce goblet cell hyperplasia, which could impact the airway physiology and susceptibility to respiratory diseases.

6.
Toxicol Rep ; 9: 1700-1709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518479

RESUMO

There has been a substantial rise in e-cigarette (e-cig) use or vaping in the past decade, prompting growing concerns about their adverse health effects. Recently, e-cig manufacturers have been using synthetic cooling agents, like WS-23 and WS-3, to provide a cooling sensation without the "menthol taste". Studies have shown that aerosols/vapes generated by e-cigs can contain significant levels of reactive oxygen species (ROS). However, studies investigating the role of synthetic coolants in modulating ROS levels generated by e-cigs are lacking. This study seeks to understand how synthetic coolants, e-cig additives that have become increasingly prevalent in e-liquids sold in the United States (US), impact acellular ROS production from e-liquid aerosols as well as cellular ROS levels from pulmonary epithelial cells exposed to these e-liquids. To further explain, our study aims to understand whether the addition of WS-3 and WS-23 to e-liquid base and e-liquid base with nicotine significantly modifies generated acellular ROS levels within aerosolized e-liquids, as well as cellular ROS within BEAS-2B cells treated with these same e-liquids. Aerosols were generated from e-liquids with and without synthetic coolants through a single-puff aerosol generator; subsequently, acellular ROS was semi-quantified in H2O2 equivalents via fluorescence spectroscopy. Our acellular ROS data suggest that adding WS-3 to e-liquid base (PG:VG), regardless of nicotine content, has a minimal impact on modifying e-cig generated acellular ROS levels. Additionally, we also measured cellular ROS in lung epithelial cells using both e-liquids containing and not containing synthetic coolants via the CellROX Green fluorescent sensor. Similar comparable results were found in BEAS2B cells though ROS was increased by WS-3 and WS-23 treated in e-cig nicotine groups. Altogether, our data suggest that neither the addition of WS-23 nor WS-3 to e-liquid base solution, with and without nicotine, significantly modifies e-cig generated acellular ROS levels within aerosolized e-liquids and cellular ROS levels within treated BEAS-2B cells. Together, our data provide insight into whether synthetic coolants added to e-liquids could impact vaping-induced oxidative stress in the lungs.

7.
Front Cell Neurosci ; 16: 954071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928571

RESUMO

Alzheimer's disease (AD) is complex and highly heterogeneous. Less than 10% of AD cases are early-onset (EOAD) caused by autosomal dominantly inherited mutations in amyloid precursor protein (APP), presenilin 1 (PS1), or presenilin 2 (PS2), each of which can increase Aß generation and, thus, amyloid plaques. The remaining 90% of cases of AD are late-onset (LOAD) or sporadic. Intense research efforts have led to identification of many genes that increase the risk of AD. An IQ motif containing protein K (IQCK) was recently identified by several investigators as an Alzheimer's disease risk gene. However, how IQCK increases AD risk is completely unknown. Since IQCK is a novel gene, there is limited information on its physiological characterization. To understand its role in AD, it is first important to determine its subcellular localization, whether and where it is expressed in the brain, and what type of brain cells express the IQCK protein. Therefore, in this study, we show by immunocytochemical (ICC) staining that IQCK is expressed in both the nucleus and the cytoplasm of SH-SY5Y neuroblastoma cells as well as HeLa cells but not in either HMC3 microglial or CHO cells. By immunohistochemistry (IHC), we also show that IQCK is expressed in both mouse and human neurons, including neuronal processes in vivo in the mouse brain. IHC data also show that the IQCK protein is widely expressed throughout the mouse brain, although regional differences were noted. IQCK expression was highest in the brainstem (BS), followed by the cerebellum (CB) and the cortex (CX), and it was lowest in the hippocampus (HP). This finding was consistent with data from an immunoblot analysis of brain tissue homogenates. Interestingly, we found IQCK expression in neurons, astrocytes, and oligodendrocytes using cell-specific antibodies, but IQCK was not detected in microglial cells, consistent with negative in vitro results in HMC3 cells. Most importantly, we found that actin-normalized IQCK protein levels were increased by 2 folds in AD brains relative to normal control (NC) brains. Furthermore, the IQCK protein was found in amyloid plaques, suggesting that IQCK may play a pathogenic role in either Aß generation or amyloid plaque deposition in AD.

9.
Front Immunol ; 13: 803362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774797

RESUMO

Research Impact: Cigarette smoke (CS) exposure is strongly associated with chronic obstructive pulmonary disease (COPD). In respiratory airways, CS exposure disrupts airway barrier functions, mucous/phlegm production, and basic immune responses of airway epithelial cells. Based on our recent identification of a specific immunomodulatory long noncoding RNA (lncRNA), we investigated its role in CS-induced responses in bronchial airways of cynomolgus macaque model of CS-induced COPD and in former smokers with and without COPD. The lncRNA was significantly upregulated in CS-induced macaque airways and in COPD airways that exhibited higher mucus expression and goblet cell hyperplasia. Experimental models of cells derived from COPD subjects recapitulated the augmented inflammation and mucus expression following the smoke challenge. Blocking of lncRNA expression in cell culture setting suppressed the smoke-induced and COPD-associated dysregulated mucoinflammatory response suggesting that this airway specific immunomodulatory lncRNA may represent a novel target to mitigate the smoke-mediated inflammation and mucus hyperexpression. Rationale: In conducting airways, CS disrupts airway epithelial functions, mucociliary clearances, and innate immune responses that are primarily orchestrated by human bronchial epithelial cells (HBECs). Mucus hypersecretion and dysregulated immune response are the hallmarks of chronic bronchitis (CB) that is often exacerbated by CS. Notably, we recently identified a long noncoding RNA (lncRNA) antisense to ICAM-1 (LASI) that mediates airway epithelial responses. Objective: To investigate the role of LASI lncRNA in CS-induced airway inflammation and mucin hyperexpression in an animal model of COPD, and in HBECs and lung tissues from former smokers with and without COPD. To interrogate LASI lncRNA role in CS-mediated airway mucoinflammatory responses by targeted gene editing. Methods: Small airway tissue sections from cynomolgus macaques exposed to long-term mainstream CS, and those from former smokers with and without COPD were analyzed. The structured-illumination imaging, RNA fluorescence in-situ hybridization (FISH), and qRT-PCR were used to characterize lncRNA expression and the expression of inflammatory factors and airway mucins in a cell culture model of CS extract (CSE) exposure using HBECs from COPD (CHBEs) in comparison with cells from normal control (NHBEs) subjects. The protein levels of mucin MUC5AC, and inflammatory factors ICAM-1, and IL-6 were determined using specific ELISAs. RNA silencing was used to block LASI lncRNA expression and lentivirus encoding LASI lncRNA was used to achieve LASI overexpression (LASI-OE). Results: Compared to controls, LASI lncRNA was upregulated in CS-exposed macaques and in COPD smoker airways, correlating with mucus hyperexpression and mucus cell hyperplasia in severe COPD airways. At baseline, the unstimulated CHBEs showed increased LASI lncRNA expression with higher expression of secretory mucin MUC5AC, and inflammatory factors, ICAM-1, and IL-6 compared to NHBEs. CSE exposure of CHBEs resulted in augmented inflammation and mucus expression compared to controls. While RNA silencing-mediated LASI knockdown suppressed the mucoinflammatory response, cells overexpressing LASI lncRNA showed elevated mRNA levels of inflammatory factors. Conclusions: Altogether, LASI lncRNA may represent a novel target to control the smoke-mediated dysregulation in airway responses and COPD exacerbations.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , RNA Longo não Codificante , Animais , Fumar Cigarros/efeitos adversos , Células Caliciformes/metabolismo , Humanos , Hiperplasia , Inflamação , Molécula 1 de Adesão Intercelular/genética , Interleucina-6 , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Longo não Codificante/genética , Nicotiana/efeitos adversos
10.
iScience ; 25(8): 104685, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35789750

RESUMO

Noncoding RNAs are important regulators of mucoinflammatory response, but little is known about the contribution of airway long noncoding RNAs (lncRNAs) in COVID-19. RNA-seq analysis showed a more than 4-fold increased expression of IL-6, ICAM-1, CXCL-8, and SCGB1A1 inflammatory factors; MUC5AC and MUC5B mucins; and SPDEF, FOXA3, and FOXJ1 transcription factors in COVID-19 patient nasal samples compared with uninfected controls. A lncRNA on antisense strand to ICAM-1 or LASI was induced 2-fold in COVID-19 patients, and its expression was directly correlated with viral loads. A SARS-CoV-2-infected 3D-airway model largely recapitulated these clinical findings. RNA microscopy and molecular modeling indicated a possible interaction between viral RNA and LASI lncRNA. Notably, blocking LASI lncRNA reduced the SARS-CoV-2 replication and suppressed MUC5AC mucin levels and associated inflammation, and select LASI-dependent miRNAs (e.g., let-7b-5p and miR-200a-5p) were implicated. Thus, LASI lncRNA represents an essential facilitator of SARS-CoV-2 infection and associated airway mucoinflammatory response.

11.
J Autoimmun ; 126: 102779, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915422

RESUMO

Severe Acute Respiratory Coronavirus (SARS-CoV-2) has been emerging in the form of different variants since its first emergence in early December 2019. A new Variant of Concern (VOC) named the Omicron variant (B.1.1.529) was reported recently. This variant has a large number of mutations in the S protein. To date, there exists a limited information on the Omicron variant. Here we present the analyses of mutation distribution, the evolutionary relationship of Omicron with previous variants, and probable structural impact of mutations on antibody binding. Our analyses show the presence of 46 high prevalence mutations specific to Omicron. Twenty-three of these are localized within the spike (S) protein and the rest localized to the other 3 structural proteins of the virus, the envelope (E), membrane (M), and nucleocapsid (N). Phylogenetic analysis showed that the Omicron is closely related to the Gamma (P.1) variant. The structural analyses showed that several mutations are localized to the region of the S protein that is the major target of antibodies, suggesting that the mutations in the Omicron variant may affect the binding affinities of antibodies to the S protein.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/virologia , SARS-CoV-2/genética , Sítios de Ligação , COVID-19/imunologia , Humanos , Mutação , Filogenia , Estrutura Terciária de Proteína , Glicoproteína da Espícula de Coronavírus/genética
12.
Semin Cancer Biol ; 86(Pt 3): 914-930, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34968667

RESUMO

Brain metastasis (BrM) is one of the major causes of death in cancer patients and is associated with an estimated 10-40 % of total cancer cases. The survival rate of brain metastatic patients has not improved due to intratumor heterogeneity, the survival adaptations of brain homing metastatic cells, and the lack of understanding of underlying molecular mechanisms that limit the availability of effective therapies. The heterogeneous population of immune cells and tumor-initiating cells or cancer stem cells in the tumor microenvironment (TME) release various factors, such as chemokines that upon binding to their cognate receptors enhance tumor growth at primary sites and help tumor cells metastasize to the brain. Furthermore, brain metastatic sites have unique heterogeneous microenvironment that fuels cancer cells in establishing BrM. This review explores the crosstalk of chemokines with the heterogeneous TME during the progression of BrM and recognizes potential therapeutic approaches. We also discuss and summarize different targeted, immunotherapeutic, chemotherapeutic, and combinatorial strategies (with chemo-/immune- or targeted-therapies) to attenuate chemokines mediated BrM.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/prevenção & controle , Quimiocinas , Células-Tronco Neoplásicas , Encéfalo , Microambiente Tumoral , Metástase Neoplásica
13.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769265

RESUMO

Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are chronic, progressive lung ailments that are characterized by distinct pathologies. Early detection biomarkers and disease mechanisms for these debilitating diseases are lacking. Extracellular vesicles (EVs), including exosomes, are small, lipid-bound vesicles attributed to carry proteins, lipids, and RNA molecules to facilitate cell-to-cell communication under normal and diseased conditions. Exosomal miRNAs have been studied in relation to many diseases. However, there is little to no knowledge regarding the miRNA population of bronchoalveolar lavage fluid (BALF) or the lung-tissue-derived exosomes in COPD and IPF. Here, we determined and compared the miRNA profiles of BALF- and lung-tissue-derived exosomes of healthy non-smokers, smokers, and patients with COPD or IPF in independent cohorts. Results: Exosome characterization using NanoSight particle tracking and TEM demonstrated that the BALF-derived exosomes were ~89.85 nm in size with a yield of ~2.95 × 1010 particles/mL in concentration. Lung-derived exosomes were larger in size (~146.04 nm) with a higher yield of ~2.38 × 1011 particles/mL. NGS results identified three differentially expressed miRNAs in the BALF, while there was one in the lung-derived exosomes from COPD patients as compared to healthy non-smokers. Of these, miR-122-5p was three- or five-fold downregulated among the lung-tissue-derived exosomes of COPD patients as compared to healthy non-smokers and smokers, respectively. Interestingly, there were a large number (55) of differentially expressed miRNAs in the lung-tissue-derived exosomes of IPF patients compared to non-smoking controls. Conclusions: Overall, we identified lung-specific miRNAs associated with chronic lung diseases that can serve as potential biomarkers or therapeutic targets.


Assuntos
Exossomos , Fibrose Pulmonar Idiopática , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Líquido da Lavagem Broncoalveolar , Exossomos/genética , Exossomos/metabolismo , Feminino , Humanos , Masculino , MicroRNAs/biossíntese , MicroRNAs/genética , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
14.
J Autoimmun ; 124: 102715, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34399188

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been rapidly evolving in the form of new variants. At least eleven known variants have been reported. The objective of this study was to delineate the differences in the mutational profile of Delta and Delta Plus variants. High-quality sequences (n = 1756) of Delta (B.1.617.2) and Delta Plus (AY.1 or B.1.617.2.1) variants were used to determine the prevalence of mutations (≥20 %) in the entire SARS-CoV-2 genome, their co-existence, and change in prevalence over a period of time. Structural analysis was conducted to get insights into the impact of mutations on antibody binding. A Sankey diagram was generated using phylogenetic analysis coupled with sequence-acquisition dates to infer the migration of the Delta Plus variant and its presence in the United States. The Delta Plus variant had a significant number of high-prevalence mutations (≥20 %) than in the Delta variant. Signature mutations in Spike (G142D, A222V, and T95I) existed at a more significant percentage in the Delta Plus variant than the Delta variant. Three mutations in Spike (K417N, V70F, and W258L) were exclusively present in the Delta Plus variant. A new mutation was identified in ORF1a (A1146T), which was only present in the Delta Plus variant with ~58 % prevalence. Furthermore, five key mutations (T95I, A222V, G142D, R158G, and K417N) were significantly more prevalent in the Delta Plus than in the Delta variant. Structural analyses revealed that mutations alter the sidechain conformation to weaken the interactions with antibodies. Delta Plus, which first emerged in India, reached the United States through England and Japan, followed by its spread to more than 20 the United States. Based on the results presented here, it is clear that the Delta and Delta Plus variants have unique mutation profiles, and the Delta Plus variant is not just a simple addition of K417N to the Delta variant. Highly correlated mutations may have emerged to keep the structural integrity of the virus.


Assuntos
COVID-19/genética , Evolução Molecular , Mutação de Sentido Incorreto , Filogenia , SARS-CoV-2/genética , Substituição de Aminoácidos , COVID-19/epidemiologia , COVID-19/transmissão , Humanos , Prevalência , SARS-CoV-2/metabolismo
15.
Neurobiol Aging ; 106: 26-36, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34229273

RESUMO

Identification of molecules and molecular pathways that can ameliorate aging-associated decline in cognitive function is crucial. Here we report that the protein levels of transcription factor EB (TFEB) were markedly reduced in both the cytosolic and nuclear fractions of the frontal cortex and hippocampus at 18-months of age relative to 6 months in the normal male wild-type mice. In the transgenic mice with ectopic expression of flag-TFEB in neurons, we observed that the levels of actin-normalized PGC1α and mtTFA were significantly increased in both the cortex and the hippocampus. Additionally, we confirmed increased mitochondria numbers in the flag-TFEB mice by transmission electron microscopy. Most importantly, TFEB expression in the 18-month-old transgenic mice mitigated markers of senescence including P16INK4a, γ-H2AX, and lamin B1, and improved memory skills implying that TFEB may exert an anti-aging effect by modulating neuronal senescence. Taken together these data strongly support that TFEB can be a useful therapeutic target for brain senescent cells to help overcome the age-related issues in cognition and possibly, achieve healthy aging.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica/genética , Transtornos da Memória/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Histonas/metabolismo , Transtornos da Memória/terapia , Camundongos Transgênicos , Terapia de Alvo Molecular
16.
medRxiv ; 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34031668

RESUMO

Respiratory epithelial cells are the primary target for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We investigated the 3D human airway tissue model to evaluate innate epithelial cell responses to SARS-CoV-2 infection. A SARS-CoV-2 clinical isolate productively infected the 3D-airway model with a time-dependent increase in viral load (VL) and concurrent upregulation of airway immunomodulatory factors ( IL-6, ICAM-1 , and SCGB1A1 ) and respiratory mucins ( MUC5AC, MUC5B, MUC2 , and MUC4) , and differential modulation of select long noncoding RNAs (lncRNAs i.e., LASI, TOSL, NEAT1 , and MALAT1 ). Next, we examined these immunomodulators in the COVID-19 patient nasopharyngeal swab samples collected from subjects with high- or low-VLs (∻100-fold difference). As compared to low-VL, high-VL patients had prominent mucoinflammatory signature with elevated expression of IL-6, ICAM-1, SCGB1A1, SPDEF, MUC5AC, MUC5B , and MUC4 . Interestingly, LASI, TOSL , and NEAT1 lncRNA expressions were also markedly elevated in high-VL patients with no change in MALAT1 expression. In addition, dual-staining of LASI and SARS-CoV-2 nucleocapsid N1 RNA showed predominantly nuclear/perinuclear localization at 24 hpi in 3D-airway model as well as in high-VL COVID-19 patient nasopharyngeal cells, which exhibited high MUC5AC immunopositivity. Collectively, these findings suggest SARS-CoV-2 induced lncRNAs may play a role in acute mucoinflammatory response observed in symptomatic COVID-19 patients.

17.
AIDS Res Hum Retroviruses ; 37(4): 266-282, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33599163

RESUMO

The concurrence of infection with human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), presents an intriguing problem with many uncertainties underlying their pathogenesis. Despite over 96.2 million cases of COVID-19 worldwide as of January 22, 2021, reports of patients coinfected with HIV and SARS-CoV-2 are scarce. It remains unknown whether HIV patients are at a greater risk of infection from SARS-CoV-2, despite their immunocompromised status. We present a systematic review of the literature reporting cases of HIV and SARS-CoV-2 coinfection, and examine trends of clinical outcomes among coinfected patients. We systematically compiled 63 reports of HIV-1 and SARS-CoV-2 coinfection, published as of January 22, 2021. These studies were retrieved through targeted search terms applied to PubMed/Medline and manual search. Despite scattered evidence, reports indicate a favorable prognosis for HIV patients with strict adherence to combined antiretroviral therapy (cART). However, the presence of comorbidities was associated with a poorer prognosis in HIV/SARS-CoV-2 patients, despite cART and viral suppression. Studies were limited by geographic coverage, small sample size, lack of patient details, and short follow-up durations. Although some anti-HIV drugs have shown promising in vitro activity against SARS-CoV-2, there is no conclusive evidence of the clinical efficacy of any anti-HIV drug in the treatment of COVID-19. Further research is needed to explain the under-representation of severe COVID-19 cases among the HIV patient population and to explore the possible protective mechanisms of cART in this vulnerable population.


Assuntos
COVID-19/complicações , Infecções por HIV/complicações , Fármacos Anti-HIV/uso terapêutico , COVID-19/virologia , Infecções por HIV/tratamento farmacológico , Humanos , SARS-CoV-2/isolamento & purificação
18.
Mol Neurobiol ; 58(6): 2465-2480, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33439437

RESUMO

The recent outbreak of SARS-CoV-2 infections that causes coronavirus-induced disease of 2019 (COVID-19) is the defining and unprecedented global health crisis of our time in both the scale and magnitude. Although the respiratory tract is the primary target of SARS-CoV-2, accumulating evidence suggests that the virus may also invade both the central nervous system (CNS) and the peripheral nervous system (PNS) leading to numerous neurological issues including some serious complications such as seizures, encephalitis, and loss of consciousness. Here, we present a comprehensive review of the currently known role of SARS-CoV-2 and identify all the neurological problems reported among the COVID-19 case reports throughout the world. The virus might gain entry into the CNS either through the trans-synaptic route via the olfactory neurons or through the damaged endothelium in the brain microvasculature using the ACE2 receptor potentiated by neuropilin-1 (NRP-1). The most critical of all symptoms appear to be the spontaneous loss of breathing in some COVID-19 patients. This might be indicative of a dysfunction within the cardiopulmonary regulatory centers in the brainstem. These pioneering studies, thus, lay a strong foundation for more in-depth basic and clinical research required to confirm the role of SARS-CoV-2 infection in neurodegeneration of critical brain regulatory centers.


Assuntos
COVID-19/complicações , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Periférico/etiologia , SARS-CoV-2 , Adulto , Fatores Etários , Enzima de Conversão de Angiotensina 2/metabolismo , Encéfalo/virologia , COVID-19/epidemiologia , COVID-19/fisiopatologia , Doenças Cardiovasculares/epidemiologia , Doenças do Sistema Nervoso Central/diagnóstico por imagem , Doenças do Sistema Nervoso Central/fisiopatologia , Criança , Comorbidade , Diabetes Mellitus/epidemiologia , Células Endoteliais/patologia , Feminino , Humanos , Nefropatias/etiologia , Hepatopatias/etiologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neuroimagem , Neuropilina-1/fisiologia , Obesidade/epidemiologia , Especificidade de Órgãos , Doenças do Sistema Nervoso Periférico/fisiopatologia , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
Mucosal Immunol ; 14(3): 630-639, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33122732

RESUMO

Epithelial cells of the conducting airways are a pivotal first line of defense against airborne pathogens and allergens that orchestrate inflammatory responses and mucociliary clearance. Nonetheless, the molecular mechanisms responsible for epithelial hyperreactivity associated with allergic asthma are not completely understood. Transcriptomic analysis of human airway epithelial cells (HAECs), differentiated in-vitro at air-liquid interface (ALI), showed 725 differentially expressed immediate-early transcripts, including putative long noncoding RNAs (lncRNAs). A novel lncRNA on the antisense strand of ICAM-1 or LASI was identified, which was induced in LPS-primed HAECs along with mucin MUC5AC and its transcriptional regulator SPDEF. LPS-primed expression of LASI, MUC5AC, and SPDEF transcripts were higher in ex-vivo cultured asthmatic HAECs that were further augmented by LPS treatment. Airway sections from asthmatics with increased mucus load showed higher LASI expression in MUC5AC+ goblet cells following multi-fluorescent in-situ hybridization and immunostaining. LPS- or IL-13-induced LASI transcripts were mostly enriched in the nuclear/perinuclear region and were associated with increased ICAM-1, IL-6, and CXCL-8 expression. Blocking LASI expression reduced the LPS or IL-13-induced epithelial inflammatory factors and MUC5AC expression, suggesting that the novel lncRNA LASI could play a key role in LPS-primed trained airway epithelial responses that are dysregulated in allergic asthma.


Assuntos
Asma/genética , Hipersensibilidade/genética , Molécula 1 de Adesão Intercelular/genética , RNA Antissenso/genética , Mucosa Respiratória/fisiologia , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Interleucina-8/metabolismo , Lipopolissacarídeos/imunologia , Mucina-5AC/genética , Mucina-5AC/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , RNA Longo não Codificante , Hipersensibilidade Respiratória , Regulação para Cima
20.
PLoS One ; 15(12): e0243065, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33290406

RESUMO

Long non-coding RNAs (lncRNAs) are the varied set of transcripts that play a critical role in biological processes like gene regulation, transcription, post-transcriptional modification, and chromatin remodeling. Recent studies have reported the presence of lncRNAs in the exosomes that are involved in regulating cell-to-cell communication in lung pathologies including lung cancer, chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). In this study, we compared the lncRNA profiles in the plasma-derived exosomes amongst non-smokers (NS), cigarette smokers (CS), E-cig users (E-cig), waterpipe smokers (WP) and dual smokers (CSWP) using GeneChip™ WT Pico kit for transcriptional profiling. We found alterations in a distinct set of lncRNAs among subjects exposed to E-cig vapor, cigarette smoke, waterpipe smoke and dual smoke with some overlaps. Gene enrichment analyses of the differentially expressed lncRNAs demonstrated enrichment in the lncRNAs involved in crucial biological processes including steroid metabolism, cell differentiation and proliferation. Thus, the characterized lncRNA profiles of the plasma-derived exosomes from smokers, vapers, waterpipe users, and dual smokers will help identify the biomarkers relevant to chronic lung diseases such as COPD, asthma or IPF.


Assuntos
Exossomos/genética , Perfilação da Expressão Gênica/métodos , RNA Longo não Codificante/genética , Fumar Tabaco/genética , Vaping/genética , Fumar Cachimbo de Água/genética , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA