Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Phys Chem Chem Phys ; 26(24): 17065-17074, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38841889

RESUMO

Charged aqueous interfaces are of paramount importance in electrochemical, biological and environmental sciences. The properties of aqueous interfaces with ionic surfactants can be influenced by the presence of counterions. Earlier experiments involving vibrational sum frequency generation (VSFG) spectroscopy of aqueous interfaces with negatively charged sodium dodecyl sulfate (Na+DS- or SDS) surfactants revealed that the hydrogen bonding strength of the interfacial water molecules follows a certain order when salts of monovalent and divalent cations are added. It is known that cations do not directly participate in hydrogen bonding with water molecules, rather they only influence the hydrogen bonded network through their electrostatic fields. In the current work, we have simulated the aqueous interfacial systems of sodium dodecyl sulfate in the presence of chloride salts of mono and divalent countercations. The electronic polarization effects on the ions are considered at a mean-field level within the electronic continuum correction model. Our calculations of the VSFG spectra show a blue shift in the presence of added countercations whose origin is traced to different relative contributions of water molecules from the solvation shells of the surfactant headgroups and the remaining water molecules in the presence of countercations. Furthermore, the cations shield the electric fields of the surfactant headgroups, which in turn influences the contributions of water molecules to the total VSFG spectrum. This shielding effect becomes more significant when divalent countercations are present. The dynamics of water molecules is found to be slower at the interface in comparison to the bulk. The interfacial depth dependence of various dynamical quantities shows that the interface is structurally and dynamically more heterogeneous at the microscopic level.

2.
J Phys Chem B ; 127(50): 10880-10895, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38055625

RESUMO

We performed a theoretical study of the temperature variation of two-dimensional vibrational sum frequency generation (2D-VSFG) spectra of the OH stretch modes at air-water interfaces in the mid-IR region. The calculations are performed at four different temperatures from 250 to 325 K by using a combination of techniques involving response function formalism of nonlinear spectroscopy, electronic structure calculations, and molecular dynamics simulations. Also, the calculations are performed for isotopically dilute solutions so that the intra- and intermolecular coupling between the vibrational modes of interest can be ignored. We have established the connections of temperature variation of various frequency- and time-dependent features of the calculated spectra to the changes in the underlying structure and dynamics of the interfaces. The results reveal that interfacial water is dynamically more heterogeneous than bulk water, with three dominant dynamical processes exhibiting their corresponding time-dependent features in the 2D-VSFG spectrum. These are the spectral diffusion of hydrogen-bonded OH groups at the interface, conversion of an initially hydrogen-bonded OH group to a dangling OH which is a stable state for surface water, unlike the bulk water, and the third one, which involves the conversion of an initially free or dangling OH group to its hydrogen-bonded state at the interface. The temporal appearance of the cross peaks corresponding to interconversion of the hydrogen-bonded state to the dangling state or vice versa of an interfacial OH group is found to take place at a slower rate than the dynamics of spectral diffusion of hydrogen-bonded molecules at the interface, which, in turn, is slower than the corresponding spectral diffusion of bulk water molecules. The temperature variation of these dynamic processes can be linked to the decay of appropriate hydrogen-bond and non-hydrogen-bond time correlation functions of interfacial water molecules for the different air-water systems studied in this work.

3.
J Phys Chem B ; 127(49): 10478-10487, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38032152

RESUMO

All-atom molecular dynamics simulations of a 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer in contact with liquid water were performed at different temperatures ranging from 285 to 320 K. We have investigated the heterogeneity and dynamical transitions in interfacial water as the lipid bilayer undergoes a melting transition. Results are obtained for water at the outer surface of the bilayer and for those buried more deeply in the lipid chains of the bilayer. It is found that lipid bilayer melting influences both the structure and dynamics of interfacial water. The number of interfacial water molecules shows a jump in the melting of the bilayer. The temperature dependence of the diffusivity and orientational relaxation of interfacial water molecules exhibits a dynamical crossover upon melting of the bilayer. The extent of dynamical crossover is found to be rather strong with significant changes in activation barriers for interfacial water around the carbonyl groups, which are deeply buried toward the lipid chains of the bilayer. The dynamical crossover gradually decreases as one moves further away from the outer surface, and it essentially vanishes for water in the region of 5-10 Å from the outer surface. It is found that the lipid melting-induced dynamical crossover of interfacial water is significant only for water that is in close proximity to the bilayer surface or deeply buried into it. The current results reveal that water molecules in different parts of the interface respond differently on melting of the bilayer. The current study also shows that the carbonyl-bound water molecules can play an important role in the phase transition of the bilayer as the temperature is raised through its melting point.

4.
J Phys Chem B ; 127(43): 9323-9335, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37871257

RESUMO

We investigated the terahertz (THz) absorption spectra of aqueous sodium halide solutions through molecular dynamics simulations using polarizable models of both water and ions. Specifically, we have considered aqueous solutions (∼1 M) of NaF, NaCl, NaBr, and NaI and calculated the difference THz spectrum of these solutions by subtracting the corresponding pure water contribution from the total THz spectrum of an ionic solution. The difference absorption spectrum of a given solution is then dissected into contributions from ion and ion-water correlations and also modifications of water-water correlations in the presence of the ions. The different components are further decomposed into induced dipole and permanent charge/dipole components and also into self- and cross-correlation components. The ion-water cross-correlation components are subsequently decomposed into contributions coming from different solvation shells through radially resolved calculations of such ion-water cross-correlations. Through all of these dissections, we could investigate the origin of different parts of the difference THz spectra of the sodium halide solutions studied here. It is found that while features below or around 100 cm-1 and also around 200 cm-1 arise mainly from ion and ion-water motion, that at the librational region above 600 cm-1 primarily originates from changes in water librational motion influenced by the ions. The variations of intensities of different components are also linked to the size and charge density of the anions in the solutions.

5.
J Phys Chem B ; 127(38): 8139-8149, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37721415

RESUMO

The pyridoxal 5'-phosphate (PLP) acts as a coenzyme for a large number of biochemical reactions. It exists in mainly two bound forms at the active site of the concerned enzyme: the internal aldimine, in which the PLP is bound with the ϵ-amino group of lysine at the active site, and the external aldimine, where the PLP is bound to the substrate amino acid. Both the internal and external aldimines have Schiff base linkage (N-H-O) and can exist in two tautomeric structures of ketoenamine and enolimine forms. In this work, we have investigated the free energy landscape for the tautomeric proton transfer in the internal and external aldimines at the active site of the ornithine decarboxylase enzyme in an aqueous medium. We performed hybrid quantum-classical metadynamics and force field-based molecular dynamics simulations, which revealed that the ketoenamine tautomer is more stable than the enolimine form. The QM/MM metadynamics calculations show that the free energy difference between the ketoenamine and enolimine forms for the internal aldimine is 3.9 kcal/mol, and it is found to be 5.8 kcal/mol for the external aldimine, with the ketoenamine form being more stable in both cases. The results are further supported by calculations of the binding free energies from classical simulations and static quantum chemical calculations in different environments. We have also analyzed the configurational structure of the microenvironment at the active site in order to have better insights into the interactions of the active site residues with the PLP in its two tautomeric forms.


Assuntos
Ornitina Descarboxilase , Bases de Schiff , Domínio Catalítico , Ornitina Descarboxilase/metabolismo , Bases de Schiff/química , Prótons , Fosfato de Piridoxal/química , Fosfatos
6.
J Phys Chem B ; 127(33): 7372-7383, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37566900

RESUMO

The study of small osmolytes in their aqueous solutions has gained significant attention because of their relevance to structure and thermodynamics of proteins in aqueous media. Special attention has been given to the binary and ternary aqueous solutions of urea and trimethylamine N-oxide (TMAO). Urea is a well-known protein denaturant, while TMAO protects proteins in their native states. Interestingly, TMAO counteracts urea's ability to denature proteins when present in solutions with approximately half of the concentration of urea. Vibrational spectroscopy can improve our understanding of the molecular origin of this counteracting effect because of its sensitivity to local structure and dynamics. We present results of theoretical linear vibrational and two-dimensional infrared (2DIR) spectroscopy of water in the binary and ternary aqueous solutions of TMAO and urea. The 2DIR spectra are calculated using the electronic structure/molecular dynamics approach. The non-Condon effects in spectral transitions are incorporated in the theoretical calculations of 2DIR spectra. It is found that TMAO disrupts the local structure of water, while urea leaves it essentially unaffected. The 2DIR results show that both TMAO and urea slow down the dynamics of spectral diffusion of water. The extent of slowing down is found to be particularly significant for both hydration and bulk water in the presence of TMAO which can be attributed to strong hydrogen bonds between the water and TMAO molecules. The water molecules present in the hydration layer of the solutes in the ternary solutions are found to relax at even slower rates compared to that in their binary solutions in water. The hydrogen bonds between TMAO and urea are found to be not stable. Thus, the counteracting effect of TMAO against urea is seen to take place mainly through water-mediated interactions. Such TMAO-induced effects giving rise to more structured and slower hydrogen-bonded network are successfully captured through 2DIR spectroscopic calculations.

7.
J Phys Chem B ; 127(30): 6714-6725, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37477243

RESUMO

The terahertz (THz) absorption spectrum of water is calculated at varying temperatures from 260 to 340 K from molecular dynamics simulations using a polarizable potential model of water. The current calculations produce the known experimental features of the THz spectrum of water such as the hydrogen-bond stretch mode at ∼200 cm-1 and librational mode at ∼600 cm-1. The peak positions generally show a red shift with an increase of temperature due to the weakening of the hydrogen bonds at higher temperatures. Overall, the changes of the spectrum with temperature are found to be in good agreement with experimental results. The total THz spectrum at a given temperature is dissected into self- and cross-correlation contributions and also into contributions from permanent dipoles, induced dipoles, and permanent-induced dipole correlations. It is shown that while the peak at ∼200 cm-1 due to hydrogen-bond stretching primarily comes from fluctuations of induced dipoles, the librational peak at around 600 cm-1 originates mainly from fluctuations of the permanent dipoles. Also, through calculations of self- and cross-correlations, it is shown that the broad librational peak arises from the superposition of several components like the antisymmetric libration, symmetric libration, and also self-dipole correlations. The length-scale-resolved calculations of cross-correlations reveal the contributions from different solvation shells to the total cross-component of the THz spectrum and how such length-scale-resolved components change with temperature. Results are also presented for the dielectric relaxation of water over different length scales and temperatures.

8.
J Phys Chem B ; 127(18): 4099-4111, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37126459

RESUMO

Binary mixtures of water and tert-butyl alcohol (TBA) are known to exhibit the so-called percolation transition where small clusters of TBA molecules span into large aggregates beyond a threshold concentration of the alcohol. In the present study, we have investigated the linear and two-dimensional infrared spectral features of aqueous solutions of TBA for varying concentration of the alcohol along the percolation transition. The percolation transition is characterized through calculations of intermolecular radial distribution functions and average size of the largest cluster of TBA molecules. It is found that, with variation of alcohol concentration, the radial distribution functions of the central carbon atoms of TBA molecules show a nonmonotonic change in the height of the first peak and also the size of the largest cluster of TBA molecules show a jump in the increase of its size for TBA mole fraction between 0.04 and 0.06 corresponding to a transition from smaller clusters to larger spanning aggregates. However, it is found that the linear infrared spectrum of water does not exhibit any noticeable changes on variation of TBA concentration along the percolation transition. Subsequently, two-dimensional infrared (2DIR) spectra and vibrational frequency time correlation function of water are calculated for all the TBA-water solutions considered in this study. The spectral diffusion of water calculated from 2DIR is found to slow down with increase of the TBA concentration. The time scales of spectral diffusion of water, as characterized by the relaxation of frequency time correlation function, 2DIR metric of central line slope, and also the hydrogen bond time correlation functions, are found to exhibit a noticeable jump along the percolation transition. The hydrophilic group of TBA is found to retard the water dynamics more effectively than the hydrophobic groups. Also, the jump in the dynamical slowdown along the percolation transition is found to be more significant for water molecules at the hydrophilic sites.

9.
J Phys Chem B ; 127(20): 4602-4612, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163726

RESUMO

The mechanism, kinetics, and potential of mean force of evaporation of water from aqueous NaCl solutions are investigated through both unbiased molecular dynamics simulations and also biased simulations using the umbrella sampling method. The results are obtained for aqueous solutions of three different NaCl concentrations ranging from 0.6 to 6.0 m and also for pure water. The rate of evaporation is found to decrease in the presence of ions. It is found that the process of evaporation of a surface water molecule from ionic solutions can be triggered through its collision with another water or chloride ion. Such collisions provide the additional kinetic energy that is required for evaporation. However, when the collision takes place with a Cl- ion, the evaporation of the escaping water also involves a collision with water in the vicinity of the ion at the same time along with the ion-water collision. These two collisions together provide the required kinetic energy for escape of the evaporating water molecule. Thus, the mechanism of evaporation process of ionic solutions can be more complex than that of pure water. The potential of mean force (PMF) of evaporation is found to be positive and it increases with increasing ion concentration. Also, no barrier in the PMF is found to be present for the condensation of water from vapor phase to the surfaces of the solutions. A detailed analysis of the unsuccessful evaporation attempts by surface water molecules is also made in the current study.

10.
J Comput Chem ; 44(17): 1560-1577, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37000187

RESUMO

The spike protein of SARS-CoV-2 exists in two major conformational states, namely the 'open' and 'closed' states which are also known as the 'up' and 'down' states, respectively. In its open state, the receptor binding domain (RBD) of the protein is exposed for binding with ACE2, whereas the spike RBD is inaccessible to ACE2 in the closed state of the protein. In the current work, we have performed all-atom microsecond simulations of the full-length trimeric spike protein solvated in explicit aqueous medium with an average system size of ~0.7 million atoms to understand the molecular nature of intra- and inter-chain interactions, water-bridged interactions between different residues that contribute to the stability of the open and closed states of the protein, and also the free energy landscape for transition between the open and closed states of the protein. We have also examined the changes of such interactions that are associated with switching from one state to the other through both unbiased and biased simulations at all-atom level with total run length of 4 µs. Interestingly, after about 0.8 µs of unbiased molecular dynamics run of the spike system in the open state, we observed a gradual transition of the monomeric chain (B) from open to its partially closed or down state. Initially the residues at the interface of chain B RBD in the open state spike protein were at non-hydrogen-bonding distances from the residues of chain C RBD. However, the two RBDs gradually came closer and finally the residue S459 of the RBD of chain B made a hydrogen bond with F374 of chain C in the last 200 ns of the simulation along with formation of a few more hydrogen bonds involving other residues. Since no transition from closed to the open state of the protein is observed in the present 1 µs unbiased simulation of the closed state protein, the current study seems to suggest that the closed conformational state is preferred for the spike protein of SARS-CoV-2 in aqueous medium. Furthermore, calculations of the free energy surface of the conformational transition from open (up) to the closed (down) state using a biased simulation method reveal a free energy barrier of ~3.20 kcal/mol for the transition of RBD from open to the closed state, whereas the barrier for the reverse process is found to be significantly higher.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus , Ligação Proteica , Simulação de Dinâmica Molecular
11.
J Phys Chem B ; 127(11): 2488-2498, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36893383

RESUMO

Non-Condon effects in vibrational spectroscopy refers to the dependence of a molecule's vibrational transition dipole and polarizability on the coordinates of the surrounding environment. Earlier studies have shown that such effects can be pronounced for hydrogen-bonded systems like liquid water. Here, we present a theoretical study of two-dimensional vibrational spectroscopy under the non-Condon and Condon approximations at varying temperatures. We have performed calculations of both two-dimensional infrared and two-dimensional vibrational Raman spectra to gain insights into the temperature dependence of non-Condon effects in nonlinear vibrational spectroscopy. The two-dimensional spectra are calculated for the OH vibration of interest in the isotopic dilution limit where the coupling between the oscillators is ignored. Generally, both the infrared and Raman line shapes undergo red shifts with decrease in temperature due to strengthening of hydrogen bonds and decrease in the fraction of OH modes with weaker or no hydrogen bonds. The infrared line shape is further red-shifted under the non-Condon effects at a given temperature, while the Raman line shape does not show any such red shift due to non-Condon effects. The spectral dynamics becomes slower on decrease of temperature due to slower hydrogen bond relaxation and, for a given temperature, the spectral diffusion occurs at a faster rate upon inclusion of non-Condon effects. The time scales of spectral diffusion extracted from different metrics agree well with each other and also with experiments. The changes in the spectrum due to non-Condon effects are found to be more significant at lower temperatures.

12.
J Chem Inf Model ; 63(6): 1819-1832, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36893463

RESUMO

Aspartyl-tRNA synthetase catalyzes the attachment of aspartic acid to its cognate tRNA by the aminoacylation reaction during the initiation of the protein biosynthesis process. In the second step of the aminoacylation reaction, known as the charging step, the aspartate moiety is transferred from aspartyl-adenylate to the 3'-OH of A76 of tRNA through a proton transfer process. We have investigated different pathways for the charging step through three separate QM/MM simulations combined with the enhanced sampling method of well-sliced metadynamics and found out the most feasible pathway for the reaction at the active site of the enzyme. In the charging reaction, both the phosphate group and the ammonium group after deprotonation can potentially act as a base for proton transfer in the substrate-assisted mechanism. We have considered three possible mechanisms involving different pathways of proton transfer, and only one of them is determined to be enzymatically feasible. The free energy landscape along reaction coordinates where the phosphate group acts as the general base showed that, in the absence of water, the barrier height is 52.6 kcal/mol. The free energy barrier is reduced to 39.7 kcal/mol when the active site water molecules are also treated quantum mechanically, thus allowing a water mediated proton transfer. The charging reaction involving the ammonium group of the aspartyl adenylate is found to follow a path where first a proton from the ammonium group moves to a water in the vicinity forming a hydronium ion (H3O+) and NH2 group. The hydronium ion subsequently passes the proton to the Asp233 residue, thus minimizing the chance of back proton transfer from hydronium to the NH2 group. The neutral NH2 group subsequently takes the proton from the O3' of A76 with a free energy barrier of 10.7 kcal/mol. In the next step, the deprotonated O3' makes a nucleophilic attack to the carbonyl carbon forming a tetrahedral transition state with a free energy barrier of 24.8 kcal/mol. Thus, the present work shows that the charging step proceeds through a multiple proton transfer mechanism where the amino group formed after deprotonation acts as the base to capture a proton from O3' of A76 rather than the phosphate group. The current study also shows the important role played by Asp233 in the proton transfer process.


Assuntos
Aspartato-tRNA Ligase , Domínio Catalítico , Prótons , Aminoacilação , Água/química , RNA de Transferência/química , Fosfatos
13.
Chemphyschem ; 24(8): e202200604, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36537178

RESUMO

The present study deals with the effects of varying coverage of water surface by alcohols on the vibrational sum frequency generation (VSFG) spectrum of interfacial water. We have considered two different alcohols: Tertiary butyl alcohol (TBA) whose alkyl part is fully branched and stearyl alcohol (STA) which has a long linear alkyl chain with larger hydrophobic surface area than that of TBA. With increase of the alcohol concentration, the hydrogen bonded OH stretch region of the VSFG spectrum is found to change following a regular trend for the STA-water system, whereas non-monotonic variation of the VSFG spectrum is observed for the TBA-water system which can be correlated with the presence of very different interactions of TBA molecules at different concentrations. On increasing the concentration of TBA, the hydrophobic groups get more tilted towards the water phase and significant hydrophobic interactions are introduced at higher concentrations. Whereas, for STA, there is a gradual increase in the hydrophilic interaction. Because of stacking interactions between the long chain alkyl groups, the hydrophobic parts stay outward from the water phase at higher concentrations and a regular change in the VSFG spectrum is observed. We have also presented a computationally efficient scheme to calculate the VSFG spectrum of interfacial systems for coupled oscillators which is expected to be beneficial for the treatment of coupling where the interfacial system size is inherently large.

14.
J Phys Chem B ; 126(29): 5375-5389, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35833966

RESUMO

The spike protein of SARS-CoV-2 is known to interact with the human ACE2 protein via its receptor binding domain (RBD). We have investigated the molecular nature of this interprotein interaction and the associated free energy diagrams for the unbinding of the two proteins for SARS-CoV-2 and some of its known variants through all-atom simulations. The present work involves generation and analysis of 2.5 µs of unbiased and 4.2 µs of biased molecular dynamics trajectories in total for five explicitly solvated RBD-ACE2 systems at full atomic level. First, we have made a comparative analysis of the details of residue-wise specific interactions of the spike protein with ACE2 for SARS-CoV-1 and SARS-CoV-2. It is found that the average numbers of both direct interprotein and water-bridged hydrogen bonds between the RBD and ACE2 are higher for SARS-CoV-2 than SARS-CoV-1. These higher hydrogen bonded interactions are further aided by enhanced nonspecific electrostatic attractions between the two protein surfaces for SARS-CoV-2. The free energy calculations reveal that there is an increase in the free energy barrier by ∼1.5 kcal/mol for the unbinding of RBD from ACE2 for SARS-CoV-2 compared to that for SARS-CoV-1. Subsequently, we considered the RBDs of three variants of SARS-CoV-2, namely N501Y, E484Q/L452R, and N440K. The free energy barrier of protein unbinding for the N501Y variant is found to be ∼4 kcal/mol higher than the wild type SARS-CoV-2 which can be attributed to additional specific interactions involving Tyr501 of RBD and Lys353 and Tyr42 of ACE2 and also enhanced nonspecific electrostatic interaction between the protein surfaces. For the other two mutant variants of E484Q/L452R and N440K, the free energy barrier for protein unbinding increases by ∼2 and ∼1 kcal/mol, respectively, compared with the wild type SARS-CoV-2, which can be attributed to an increase in the number of interprotein hydrogen bonds for the former and also to enhanced positive electrostatic potential on the RBD surfaces for both of the variants. The successive breaking of interprotein hydrogen bonds along the free energy pathway of the unbinding process is also found out for all five systems studied here.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , Humanos , Simulação de Dinâmica Molecular , Mutação , Peptidil Dipeptidase A/química , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
15.
J Phys Chem B ; 126(31): 5821-5831, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35895864

RESUMO

The process of protein biosynthesis is initiated by the aminoacylation process where a transfer ribonucleic acid (tRNA) is charged by the attachment of its cognate amino acid at the active site of the corresponding aminoacyl tRNA synthetase enzyme. The first step of the aminoacylation process, known as the adenylation reaction, involves activation of the cognate amino acid where it reacts with a molecule of adenosine triphosphate (ATP) at the active site of the enzyme to form the aminoacyl adenylate and inorganic pyrophosphate. In the current work, we have investigated the adenylation reaction between aspartic acid and ATP at the active site of the fully solvated aspartyl tRNA synthetase (AspRS) from Escherichia coli in aqueous medium at room temperature through hybrid quantum mechanical/molecular mechanical (QM/MM) simulations combined with enhanced sampling methods of well-tempered and well-sliced metadynamics. The objective of the present work is to study the associated free energy landscape and reaction barrier and also to explore the effects of active site mutation on the free energy surface of the reaction. The current calculations include finite temperature effects on free energy profiles. In particular, apart from contributions of interaction energies, the current calculations also include contributions of conformational, vibrational, and translational entropy of active site residues, substrates, and also the rest of the solvated protein and surrounding water into the free energy calculations. The present QM/MM metadynamics simulations predict a free energy barrier of 23.35 and 23.5 kcal/mol for two different metadynamics methods used to perform the reaction at the active site of the wild type enzyme. The free energy barrier increases to 30.6 kcal/mol when Arg217, which is an important conserved residue of the wild type enzyme at its active site, is mutated by alanine. These free energy results including the effect of mutation compare reasonably well with those of kinetic experiments that are available in the literature. The current work also provides molecular details of structural changes of the reactants and surroundings as the system dynamically evolves along the reaction pathway from reactant to the product state through QM/MM metadynamics simulations.


Assuntos
Aspartato-tRNA Ligase , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Aminoacilação , Aspartato-tRNA Ligase/química , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Sítios de Ligação , Domínio Catalítico , Entropia , Escherichia coli/genética , Ligases/metabolismo , RNA de Transferência/metabolismo
16.
Phys Chem Chem Phys ; 24(12): 7374-7386, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266477

RESUMO

The structure, dynamics and vibrational spectroscopy of a water surface covered by a monolayer of stearyl alcohol (STA) are investigated by means of molecular dynamics simulations and vibrational sum frequency generation (VSFG) spectral calculations. The STA molecules possess long linear alkyl chains without any branching and have a rather large hydrophobic surface area. The STA-water interface is found to be rather narrow with an ordered outward arrangement of the alcohol chains at the water surface. The water molecules in the interfacial region which contribute most to the observed VSFG spectrum are identified. It is shown that the observed red shift in the hydrogen bonded part of the VSFG spectrum can originate from partial cancellation of the spectral responses from up and down-oriented OH moieties of interfacial water which are hydrogen bonded, respectively, to alcohol and water molecules. The effects of intra and intermolecular coupling to the VSFG spectrum are also calculated for the STA-water interface considered here. On the dynamical side, a slowing down of the hydrogen bond and orientational relaxation is found for the interfacial water. It is found that the ordered arrangement of STA molecules at the surface holds the interfacial water molecules rather tightly and slows down the dynamics. The current results of the STA-water interface are also compared with those of the tertiary butyl alcohol (TBA)-water interface where the alcohol has a fully branched hydrophobic part of the lower surface area.

17.
J Phys Chem B ; 126(2): 528-544, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35001626

RESUMO

Ab initio molecular dynamics simulations are performed to study the hydration shell structure, dynamics, and vibrational echo spectroscopy of aqueous Mg(NO3)2 and Ca(NO3)2 solutions. The hydration shell structure is probed through calculations of various ion-ion and ion-water radial and spatial distribution functions. On the dynamical side, calculations have been made for the hydrogen bond dynamics of hydration shells and also residence dynamics and lifetimes of water in different solvation environments. Subsequently, we looked at the dynamics of frequency fluctuations of OD modes of heavy water in different hydration environments. Specifically, the temporal decay of spectral observables of two-dimensional infrared (2DIR) spectroscopy, three pulse echo peak shift (3PEPS) measurements and also of time correlations of frequency fluctuations are calculated to investigate the dynamics of vibrational spectral diffusion of water in different hydration environments in these solutions. The OD stretch frequencies of water molecules in the vicinity of both divalent cations are found to be red-shifted and also fluctuating at a slower rate than other water molecules present in the solutions. The Mg2+ ions are found to be strongly hydrated which can be linked to their lower tendency to form contact ion-pairs and essentially no water exchange between the cationic hydration shells and bulk during the time scale of the current simulations. The stronger hydration of Mg2+ ions make their hydration shells structurally and dynamically more rigid and make the dynamics of hydrogen bonds and vibrational spectral diffusion, as revealed through spectral observables of 2DIR and 3PEPS slower than that for the Ca2+ ions. The structural and spectral dynamics of water molecules outside the cationic solvation shells in the Mg(NO3)2 solution are also found to be relatively slower than that of the Ca(NO3)2 solution and pure water which show the effects of stronger electric fields of Mg2+ ions extending beyond their first hydration shells. Also, water molecules in the hydration shells of the NO3- ions are found to relax at a slower rate in the Mg(NO3)2 solution which manifests the effect countercations have on anionic hydration shells for divalent metal nitrate solutions.


Assuntos
Simulação de Dinâmica Molecular , Nitratos , Compostos de Cálcio , Magnésio , Nitratos/química , Espectrofotometria Infravermelho , Água/química
18.
J Phys Chem B ; 125(43): 11848-11856, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34696588

RESUMO

Serine hydroxymethyltransferase (SHMT) is a ubiquitous enzyme belonging to the fold type I or aspartate aminotransferase (AspAT) family of the pyridoxal 5'-phosphate (PLP)-dependent enzymes. Like other PLP-dependent enzymes, SHMT also undergoes the so-called transimination reaction before exhibiting its enzymatic activity. The transimination process constitutes an important pre-step for all PLP-dependent enzymes, where an internal aldimine of the PLP-enzyme complex gets converted to an external aldimine of the substrate-PLP complex at the active site of the enzyme. In case of the transimination reaction involving SHMT, the PLP molecule bound to the active site lysine residue of SHMT (internal aldimine) gets detached from the enzyme by a serine substrate to produce an external aldimine complex, where the PLP is now bound to the serine substrate. In the current study, the free energy surfaces and reaction pathways of different steps of the transimination reaction at the active site of SHMT are investigated by employing hybrid quantum mechanical/molecular mechanical (QM/MM) simulations combined with metadynamics methods of rare event sampling. It is found that the process of transimination involving serine and PLP at the active site of the SHMT enzyme takes place through different elementary steps such as the formation of the first geminal diamine intermediate (GDI1), transfer of a proton from the substrate serine to the phenolic oxygen of PLP, followed by another proton transfer from PLP to the amine nitrogen of lysine with the formation of the second geminal diamine intermediate (GDI2), and finally, detachment of the active site lysine residue from PLP to produce the external aldimine.


Assuntos
Glicina Hidroximetiltransferase , Prótons , Domínio Catalítico , Glicina Hidroximetiltransferase/genética , Fosfato de Piridoxal , Água
19.
J Phys Chem B ; 125(40): 11159-11178, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34605235

RESUMO

The aggregation of amyloid ß (Aß) peptide triggered by its conformational changes leads to the commonly known neurodegenerative disease of Alzheimer's. It is believed that the formation of ß sheets of the peptide plays a key role in its aggregation and subsequent fibrillization. In the current study, we have investigated the interactions of the Aß(1-42) peptide with boron nitride nanoparticles and the effects of the latter on conformational transitions of the peptide through a series of molecular dynamics simulations. In particular, the effects of curvature of the nanoparticle surface are studied by considering boron nitride nanotubes (BNNTs) of varying diameter and also a planar boron nitride nanosheet (BNNS). Altogether, the current study involves the generation and analysis of 9.5 µs of dynamical trajectories of peptide-BNNT/BNNS pairs in an aqueous medium. It is found that BN nanoparticles of different curvatures that are studied in the present work inhibit the conformational transition of the peptide to its ß-sheet form. However, such an inhibition effect follows different pathways for BN nanoparticles of different curvatures. For the BNNT with the highest surface curvature, i.e., (3,3) BNNT, the nanoparticle is found to inhibit ß-sheet formation by stabilizing the helical structure of the peptide, whereas for planar BNNS, the ß-sheet formation is prevented by making more favorable pathways available for transitions of the peptide to conformations of random coils and turns. The BNNTs with intermediate curvatures are found to exhibit diverse pathways of their interactions with the peptide, but in all cases, essentially no formation of the ß sheet is found whereas substantial ß-sheet formation is observed for Aß(1-42) in water in the absence of any nanoparticle. The current study shows that BN nanoparticles have the potential to act as effective tools to prevent amyloid formation from Aß peptides.


Assuntos
Nanopartículas , Doenças Neurodegenerativas , Peptídeos beta-Amiloides , Compostos de Boro , Humanos , Fragmentos de Peptídeos , Conformação Proteica em Folha beta , Água
20.
J Comput Chem ; 41(32): 2684-2694, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932551

RESUMO

Transaminase is a key enzyme for amino acid metabolism, which reversibly catalyzes the transamination reaction with the help of PLP (pyridoxal 5' -phosphate) as its cofactor. Here we have investigated the mechanism and free energy landscape of the transamination reaction involving the aspartate transaminase (AspTase) enzyme and aspartate-PLP (Asp-PLP) complex using QM/MM simulation and metadynamics methods. The reaction is found to follow a stepwise mechanism where the active site residue Lys258 acts as a base to shuttle a proton from α-carbon (CA) to imine carbon (C4A) of the PLP-Asp Schiff base. In the first step, the Lys258 abstracts the CA proton of the substrate leading to the formation of a carbanionic intermediate which is followed by the reprotonation of the Asp-PLP Schiff base at C4A atom by Lys258. It is found that the free energy barrier for the proton abstraction by Lys258 and that for the reprotonation are 17.85 and 3.57 kcal/mol, respectively. The carbanionic intermediate is 7.14 kcal/mol higher in energy than the reactant. Hence, the first step acts as the rate limiting step. The present calculations also show that the Lys258 residue undergoes a conformational change after the first step of transamination reaction and becomes proximal to C4A atom of the Asp-PLP Schiff base to favor the second step. The active site residues Tyr70* and Gly38 anchor the Lys258 in proper position and orientation during the first step of the reaction and stabilize the positive charge over Lys258 generated at the intermediate step.


Assuntos
Aspartato Aminotransferases/química , Ácido Aspártico/química , Fosfato de Piridoxal/química , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Iminas/química , Modelos Moleculares , Conformação Proteica , Prótons , Bases de Schiff/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA