Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Acta Pharm ; 74(1): 1-36, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554385

RESUMO

The arrival of comprehensive genome sequencing has accelerated the understanding of genetically aberrant advanced cancers and target identification for possible cancer treatment. Fibroblast growth factor receptor (FGFR) gene alterations are frequent findings in various rare and advanced cancers refractive to mainstay chemo-therapy or surgical interventions. Several FGFR inhibitors have been developed for addressing these genetically altered FGFR-harboring malignancies, and some have performed well in clinical trials. In contrast, others are still being investigated in different phases of clinical trials. FDA has approved four anticancer agents such as erdafitinib, pemigatinib, infigratinib, and futibatinib, for clinical use in oncogenic FGFR-driven malignancies. These include cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid malignancies. Pemigatinib is the only FGFR inhibitor globally approved (USA, EU, and Japan) and available as a targeted therapy for two types of cancer, including FGFR2 fusion or other rearrangements harboring cholangiocarcinoma and relapsed/refractory myeloid/lymphoid neoplasms with FGFR1 rearrangements. Myeloid/lymphoid neoplasm is the latest area of application added to the therapeutic armamentarium of FGFR inhibitors. Furthermore, futibatinib is the first-in-class covalent or irreversible pan-FGFR inhibitor that has received FDA approval for locally advanced or metastatic intrahepatic cholangiocarcinoma harboring FGFR2 gene aberrations. This review highlights the current clinical progress concerning the safety and efficacy of all the approved FGFR-TKIs (tyrosine kinase inhibitors) and their ongoing investigations in clinical trials for other oncogenic FGFR-driven malignancies.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma de Células de Transição , Colangiocarcinoma , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Ductos Biliares Intra-Hepáticos/patologia
2.
Front Pharmacol ; 15: 1290398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505421

RESUMO

Background: Alchornea laxiflora (Benth.) Pax & K. Hoffm. (A. laxiflora) has been indicated in traditional medicine to treat depression. However, scientific rationalization is still lacking. Hence, this study aimed to investigate the antidepressant potential of A. laxiflora using network pharmacology and molecular docking analysis. Materials and methods: The active compounds and potential targets of A. laxiflora and depression-related targets were retrieved from public databases, such as PubMed, PubChem, DisGeNET, GeneCards, OMIM, SwissTargetprediction, BindingDB, STRING, and DAVID. Essential bioactive compounds, potential targets, and signaling pathways were predicted using in silico analysis, including BA-TAR, PPI, BA-TAR-PATH network construction, and GO and KEGG pathway enrichment analysis. Later on, with molecular docking analysis, the interaction of essential bioactive compounds of A. laxiflora and predicted core targets of depression were verified. Results: The network pharmacology approach identified 15 active compounds, a total of 219 compound-related targets, and 14,574 depression-related targets with 200 intersecting targets between them. SRC, EGFR, PIK3R1, AKT1, and MAPK1 were the core targets, whereas 3-acetyloleanolic acid and 3-acetylursolic acid were the most active compounds of A. laxiflora with anti-depressant potential. GO functional enrichment analysis revealed 129 GO terms, including 82 biological processes, 14 cellular components, and 34 molecular function terms. KEGG pathway enrichment analysis yielded significantly enriched 108 signaling pathways. Out of them, PI3K-Akt and MAPK signaling pathways might have a key role in treating depression. Molecular docking analysis results exhibited that core targets of depression, such as SRC, EGFR, PIK3R1, AKT1, and MAPK1, bind stably with the analyzed bioactive compounds of A. laxiflora. Conclusion: The present study elucidates the bioactive compounds, potential targets, and pertinent mechanism of action of A. laxiflora in treating depression. A. laxiflora might exert an antidepressant effect by regulating PI3K-Akt and MAPK signaling pathways. However, further investigations are required to validate.

3.
Sci Total Environ ; 915: 170113, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232846

RESUMO

Pesticides are chemical substances of natural or synthetic origin that are used to eradicate pests and insects. These are indispensable in the agricultural processes for better crop production. Pesticide use aims to promote crop yield and protect the crops from diseases and damage. Pesticides must be handled carefully and disposed of appropriately because they are dangerous to people and other species by default. Environmental pollution occurs when pesticide contamination spreads away from the intended plants. Older pesticides such as lindane and dichlorodiphenyltrichloroethane (DDT) may remain in water and soil for a longer time. These accumulate in various parts of the food chain and cause damage to the ecosystem. Biological techniques in the management of pest control such as importation, augmentation, and conservation, and the accompanying procedures are more efficient, less expensive, and ecologically sound than other ways. This review mainly focuses on the consequences on the targeted and non-targeted organisms including the health and well-being of humans by the use of pesticides and their toxicity. The side effects that occur when a pesticide's LD50 exceeds the accepted limit through oral or skin penetration due to their binding to various receptors such as estrogen receptors, GABA, EGFR, and others. These pesticide classes include carbamates, pyrethroids, organochlorides, organophosphorus, and others. The current study seeks to highlight the urgent requirement for a novel agricultural concept that includes a major reduction in the use of chemical pesticides.


Assuntos
Praguicidas , Piretrinas , Humanos , Praguicidas/análise , Ecossistema , Poluição Ambiental , Produtos Agrícolas
4.
Gels ; 9(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38131915

RESUMO

The purpose of this work was to develop a novel topical formulation of econazole nitrate based on gel that can be easily scaled up in one pot for the potential treatment of fungal and yeast infections. Econazole nitrate, a topical antifungal, is used to treat tinea versicolor, tinea pedis, and tinea cruris. Compared to applying cream or ointment, topical gels offer numerous advantages, one of which is that the drug is released more quickly to the intended site of action. A viscous mixture of propylene glycol, Capmul® MCM C8, methyl and propyl paraben, and econazole nitrate were mixed together before being formulated into the optimized Carbopol® gel bases. The gel's color, appearance, and homogeneity were assessed visually. For every formulation, the drug content, pH, viscosity, spreadability, and gel strength were characterized. The cup plate diffusion method was used to evaluate the anti-fungal activity of the prepared formulations. To assess the behavior of the developed system, studies on in vitro release and mechanism were conducted. The manufactured formulations were transparent, pale yellow, and exhibited excellent homogeneity. The pH of each formulation was roughly 6.0, making them suitable for topical use. The concentration of Carbopol® 940 resulted in a significant increase in viscosity and gel strength but a significant decrease in spreadability. It was demonstrated that the prepared formulations inhibited the growth of Candida albicans and Aspergillus fumigatus. In contrast, the standard blank gel showed no signs of antifungal action. By increasing the concentration of Carbopol® 940, the in vitro release profile of econazole nitrate significantly decreased. Following the Korsmeyer-Peppas model fitting, all formulations exhibited n values greater than 0.5 and less than 1, indicating that diffusion and gel swelling control econazole nitrate release.

5.
Gels ; 9(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37754369

RESUMO

A promising controlled drug delivery system has been developed based on polymeric buccoadhesive bilayered formulation that uses a drug-free backing layer and a polymeric hydrophilic gel buccoadhesive core layer containing nifedipine. The DSC thermogravimetric analysis confirms the drug's entrapment in the gel layer and reveals no evidence of a potential interaction. Various ratios of bioadhesive polymers, including HPMC K100, PVP K30, SCMC, and CP 934, were combined with EC as an impermeable backing layer to ensure unidirectional drug release towards the buccal mucosa. The polymeric compositions of hydrophilic gel-natured HPMC, SCMC, and CP formed a matrix layer by surrounding the core nifedipine during compression. Preformulation studies were performed for all of the ingredients in order to evaluate their physical and flow characteristics. Ex vivo buccoadhesive strength, surface pH, swelling index, in vitro and in vivo drug release, and ex vivo permeation investigations were performed to evaluate the produced gel-based system. Rapid temperature variations had no appreciable impact on the substance's physical properties, pharmacological content, or buccoadhesive strength during stability testing using actual human saliva. It was clear from a histological examination of the ex vivo mucosa that the developed system did not cause any irritation or inflammation at the site of administration. The formulation NT5 was the best one, with a correlation coefficient of 0.9966. The in vitro and in vivo drug release profiles were well correlated, and they mimic the in vitro drug release pattern via the biological membrane. Thus, the developed gel-based formulation was found to be novel, stable, and useful for the targeted delivery of nifedipine.

6.
Pharmacol Ther ; 250: 108525, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37696366

RESUMO

Cancer is one of the most common causes of death. So, its lethal effect increases with time. Near about hundreds of cancers are known in humans. Cancer treatment is done to cure or prolonged remission, and shrinkage of the tumor. Cytotoxic agents, biological agents/targeted drugs, hormonal drugs, surgery, radiotherapy/proton therapy, chemotherapy, immunotherapy, and gene therapy are currently used in the treatment of cancer but their cost is high and cause various side effects. Seeing this, some new targeted strategies such as PROTACs are the need of the time. Proteolysis targeting chimera (PROTAC) has become one of the most discussed topics regarding cancer treatment. Few of the PROTAC molecules are in the trial phases. PROTACs have many advantages over other strategies such as modularity, compatibility, sub-stoichiometric activity, acting on undruggable targets, molecular design, and acts on intracellular targets, selectivity and specificity can be recruited for any cancer, versatility, and others. PROTACs are having some unclear questions on their pharmacokinetics, heavy-molecular weight, etc. PROTACs are anticipated to bring about a conversion in current healthcare and will emerge as booming treatments. In this review article we summarize PROTACs, their mechanism of action, uses, advantages, disadvantages, challenges, and future aspects for the successful development of potent PROTACs as a drug strategy.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Quimera de Direcionamento de Proteólise , Ubiquitinação , Neoplasias/tratamento farmacológico
8.
Antibiotics (Basel) ; 12(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37237812

RESUMO

The nature of microorganisms and the efficiency of antimicrobials have witnessed a huge co-dependent change in their dynamics over the last few decades. On the other side, metals and metallic compounds have gained popularity owing to their effectiveness against various microbial strains. A structured search of both research and review papers was conducted via different electronic databases, such as PubMed, Bentham, Springer, and Science Direct, among others, for the present review. Along with these, marketed products, patents, and Clinicaltrials.gov were also referred to for our review. Different microbes such as bacteria, fungi, etc., and their diverse species and strains have been reviewed and found to be sensitive to metal-carrying formulations. The products are observed to restrict growth, multiplication, and biofilm formation effectively and adequately. Silver has an apt use in this area of treatment and recovery, and other metals like copper, gold, iron, and gallium have also been observed to generate antimicrobial activity. The present review identified membrane disruption, oxidative stress, and interaction with proteins and enzymes to be the primary microbicidal processes. Elaborating the action, nanoparticles and nanosystems are shown to work in our favor in well excelled and rational ways.

9.
Front Pharmacol ; 14: 1135145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021053

RESUMO

Severe cases of COVID-19 are characterized by hyperinflammation induced by cytokine storm, ARDS leading to multiorgan failure and death. JAK-STAT signaling has been implicated in immunopathogenesis of COVID-19 infection under different stages such as viral entry, escaping innate immunity, replication, and subsequent inflammatory processes. Prompted by this fact and prior utilization as an immunomodulatory agent for several autoimmune, allergic, and inflammatory conditions, Jakinibs have been recognized as validated small molecules targeting the rapid release of proinflammatory cytokines, primarily IL-6, and GM-CSF. Various clinical trials are under investigation to evaluate Jakinibs as potential candidates for treating COVID-19. Till date, there is only one small molecule Jakinib known as baricitinib has received FDA-approval as a standalone immunomodulatory agent in treating critical COVID-19 patients. Though various meta-analyses have confirmed and validated the safety and efficacy of Jakinibs, further studies are required to understand the elaborated pathogenesis of COVID-19, duration of Jakinib treatment, and assess the combination therapeutic strategies. In this review, we highlighted JAK-STAT signalling in the pathogenesis of COVID-19 and clinically approved Jakinibs. Moreover, this review described substantially the promising use of Jakinibs and discussed their limitations in the context of COVID-19 therapy. Hence, this review article provides a concise, yet significant insight into the therapeutic implications of Jakinibs as potential anti-COVID agents which opens up a new horizon in the treatment of COVID-19, effectively.

10.
Gels ; 9(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36826332

RESUMO

The present work aimed to formulate and evaluate a polyherbal gel using Aloe barbadensis and extract of Vigna radiata for the treatment of acne, a disorder of the skin in which hair follicles and sebaceous glands are blocked, causing inflammation and redness of the skin. Aloe barbadensis pulp was collected and mixed with the extract of Vigna radiata and formulated into a gel using Carbopol 940, triethanolamine, and propylene glycol as the gelling agent, viscosity modifier, and pH modifier, respectively. The gel was evaluated for its antimicrobial properties against Staphylococcus aureus, Escherichia coli, and Candida albicans. Antimicrobial agents, such as gentamycin and fluconazole, were used as the standards. The developed formulation showed promising zone of inhibition. The gel was further evaluated for its physicochemical properties. The formulation showed a promising effect on acne together with the additive effect of Aloe barbadensis on skin.

11.
Front Pharmacol ; 13: 958453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545314

RESUMO

Ethnopharmacological relevance: Alchornea laxiflora (Benth.) Pax & K. Hoffm. (Euphorbiaceae) is an important traditional medicinal plant grown in tropical Africa. The stem, leaves, and root have been widely used in the folk medicine systems in Nigeria, Cameroon, South Africa, and Ghana to treat various ailments, including inflammatory, infectious, and central nervous system disorders, such as anxiety and epilepsy. Material and methods: The scientific name of the plant was validated using the "The Plant List," "Kew Royal Botanic Gardens," and Tropicos Nomenclatural databases. The literature search on A. laxiflora was performed using electronic search engines and databases such as Google scholar, ScienceDirect, PubMed, AJOL, Scopus, and Mendeley. Results: To the best of our knowledge, no specific and detailed review has been reported on A. laxiflora. Consequently, this review provides an up-to-date systematic presentation on ethnobotany, phytoconstituents, pharmacological activities, and toxicity profiles of A. laxiflora. Phytochemical investigations disclosed the presence of important compounds, such as alkaloids, flavonoids, phenolics, terpenoids, and fatty acids. Furthermore, various pharmacological activities and traditional uses reported for this botanical drug were discussed comprehensively. Conclusion: This systemic review presents the current status and perspectives of A. laxiflora as a potential therapeutic modality that would assist future researchers in exploring this African botanical drug as a source of novel drug candidates for varied diseases.

12.
Polymers (Basel) ; 14(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080771

RESUMO

Conventional oral formulations are mainly absorbed in the small intestine. This limits their use in the treatment of some diseases associated with the colon, where the drug has to act topically at the inflammation site. This paved the way for the development of a smart colonic drug delivery system, thereby improving the therapeutic efficacy, reducing the dosing frequency and potential side effects, as well as improving patient acceptance, especially in cases where enemas or other topical preparations may not be effective alone in treating the inflammation. In healthy individuals, it takes an oral medication delivery system about 5 to 6 h to reach the colon. A colonic drug delivery system should delay or prohibit the medication release during these five to six hours while permitting its release afterward. The main aim of this study was to develop a smart drug delivery system based on pH-sensitive polymeric formulations, synthesized by a free-radical bulk polymerization method, using different monomer and crosslinker concentrations. The formulations were loaded with 5-amino salicylic acid as a model drug and Capmul MCM C8 as a bioavailability enhancer. The glass transition temperature (Tg), tensile strength, Young's modulus, and tensile elongation at break were all measured as a part of the dried films' characterization. In vitro swelling and release studies were performed to assess the behavior of the produced formulations. The in vitro swelling and release evaluation demonstrated the potential ability of the developed system to retard the drug release at conditions mimicking the stomach and small intestine while triggering its release at conditions mimicking the colon, which indicates its promising applicability as a potential smart colonic drug delivery system.

14.
Regul Toxicol Pharmacol ; 131: 105144, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218873

RESUMO

Ziziphus mauritana Lam leaves were used to treat asthma, diabetes, pain, and inflammation in the Indian traditional system of medicine. The leaves of the Ziziphus mauritiana Lam were consumed as a vegetable in Indonesia and India. The present study aims to predict the pharmacokinetic properties of flavonoids identified & quantified through U(H)PLC and to evaluate the safety of methanol extract of Ziziphus mauritana Lam leaves (MEZ) in rats. A U(H)PLC-ESI-QTOF-MS/MS was performed to identify flavonoids present in MEZ and quantified using U(H)PLC method. The in-silico ADME properties of the flavonoids were analyzed using Schrodinger Maestro software. The acute oral toxicity study was performed by administering a single dose of MEZ (5000 mg/kg) in female rats and observed for 14 days. The sub-chronic studies were carried out by oral administration of MEZ at 500, 750, and 1000 mg/kg daily for 90 days. The changes in hematological parameters, clinical biochemistry, and histopathology were observed after the treatment period. Eight flavonoids rutin, kaempferol, luteolin, myricetin, catechin, and apigenin were identified from were identified in UPLC-QTOF-MS/MS analysis. These results showed the highest amount of luteolin (5.41 µg/ml) and kaempferol (4.02 µg/ml) present in MEZ. No signs of toxicity or mortality were observed in acute toxicity studies. In the sub-chronic studies, data showed that MEZ does not produce any changes in hematological and clinical biochemical parameters compared to control rats. MEZ (1000 mg/kg) significantly (p < 0.05) reduced total cholesterol, triglycerides, in male rats, which was more prominent on day 90. The histopathological analysis also revealed no changes in the vital organs. These results conclude that MEZ was considered safe and well-tolerated in rats.


Assuntos
Ziziphus , Animais , Feminino , Flavonoides/toxicidade , Quempferóis/análise , Luteolina/análise , Masculino , Metanol , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Folhas de Planta/química , Ratos , Padrões de Referência , Espectrometria de Massas em Tandem , Ziziphus/química
15.
Front Mol Biosci ; 8: 637122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291081

RESUMO

COVID-19 is one of the members of the coronavirus family that can easily assail humans. As of now, 10 million people are infected and above two million people have died from COVID-19 globally. Over the past year, several researchers have made essential advances in discovering potential drugs. Up to now, no efficient drugs are available on the market. The present study aims to identify the potent phytocompounds from different medicinal plants (Zingiber officinale, Cuminum cyminum, Piper nigrum, Curcuma longa, and Allium sativum). In total, 227 phytocompounds were identified and screened against the proteins S-ACE2 and M pro through structure-based virtual screening approaches. Based on the binding affinity score, 30 active phytocompounds were selected. Amongst, the binding affinity for beta-sitosterol and beta-elemene against S-ACE2 showed -12.0 and -10.9 kcal/mol, respectively. Meanwhile, the binding affinity for beta-sitosterol and beta-chlorogenin against M pro was found to be -9.7 and -8.4 kcal/mol, respectively. Further, the selected compounds proceeded with molecular dynamics simulation, prime MM-GBSA analysis, and ADME/T property checks to understand the stability, interaction, conformational changes, binding free energy, and pharmaceutical relevant parameters. Moreover, the hotspot residues such as Lys31 and Lys353 for S-ACE2 and catalytic dyad His41 and Cys145 for M pro were actively involved in the inhibition of viral entry. From the in silico analyses, we anticipate that this work could be valuable to ongoing novel drug discovery with potential treatment for COVID-19.

16.
Bioorg Chem ; 115: 105133, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34329993

RESUMO

Novel chemotherapeutic agents against multidrug resistant-tuberculosis (MDR-TB) are urgently needed at this juncture to save the life of TB-infected patients. In this work, we have synthesized and characterized novel isatin hydrazones 4(a-o) and their thiomorpholine tethered analogues 5(a-o). All the synthesized compounds were initially screened for their anti-mycobacterial activity against the H37Rv strain of Mycobacterium tuberculosis (MTB) under level-I testing. Remarkably, five compounds 4f, 4h, 4n, 5f and 5m (IC50 = 1.9 µM to 9.8 µM) were found to be most active, with 4f (IC50 = 1.9 µM) indicating highest inhibition of H37Rv. These compounds were further evaluated at level-II testing against the five drug-resistant strains such as isoniazid-resistant strains (INH-R1 and INH-R2), rifampicin-resistant strains (RIF-R1 and RIF-R2) and fluoroquinolone-resistant strain (FQ-R1) of MTB. Interestingly, 4f and 5f emerged as the most potent compounds with IC50 of 3.6 µM and 1.9 µM against RIF-R1 MTB strain, followed by INH-R1 MTB strain with IC50 of 3.5 µM and 3.4 µM, respectively. Against FQ-R1 MTB strain, the lead compounds 4f and 5f displayed excellent inhibition at IC50 5.9 µM and 4.9 µM, respectively indicating broad-spectrum of activity. Further, molecular docking, ADME pharmacokinetic and molecular dynamics simulations of the compounds were performed against the DNA gyrase B and obtained encouraging results.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Hidrazonas/química , Isatina/química , Morfolinas/química , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Antituberculosos/metabolismo , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , DNA Girase/química , DNA Girase/metabolismo , Desenho de Fármacos , Meia-Vida , Humanos , Hidrazonas/metabolismo , Hidrazonas/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Rifampina/farmacologia , Relação Estrutura-Atividade
17.
Front Mol Biosci ; 8: 635337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937326

RESUMO

Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, arose at the end of 2019 as a zoonotic virus, which is the causative agent of the novel coronavirus outbreak COVID-19. Without any clear indications of abatement, the disease has become a major healthcare threat across the globe, owing to prolonged incubation period, high prevalence, and absence of existing drugs or vaccines. Development of COVID-19 vaccine is being considered as the most efficient strategy to curtail the ongoing pandemic. Following publication of genetic sequence of SARS-CoV-2, globally extensive research and development work has been in progress to develop a vaccine against the disease. The use of genetic engineering, recombinant technologies, and other computational tools has led to the expansion of several promising vaccine candidates. The range of technology platforms being evaluated, including virus-like particles, peptides, nucleic acid (DNA and RNA), recombinant proteins, inactivated virus, live attenuated viruses, and viral vectors (replicating and non-replicating) approaches, are striking features of the vaccine development strategies. Viral vectors, the next-generation vaccine platforms, provide a convenient method for delivering vaccine antigens into the host cell to induce antigenic proteins which can be tailored to arouse an assortment of immune responses, as evident from the success of smallpox vaccine and Ervebo vaccine against Ebola virus. As per the World Health Organization, till January 22, 2021, 14 viral vector vaccine candidates are under clinical development including 10 nonreplicating and four replicating types. Moreover, another 39 candidates based on viral vector platform are under preclinical evaluation. This review will outline the current developmental landscape and discuss issues that remain critical to the success or failure of viral vector vaccine candidates against COVID-19.

18.
Front Mol Biosci ; 8: 628585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041263

RESUMO

The recently emerged coronavirus (SARS-CoV-2) has created a crisis in world health, and economic sectors as an effective treatment or vaccine candidates are still developing. Besides, negative results in clinical trials and effective cheap solution against this deadly virus have brought new challenges. The viral protein, the main protease from SARS-CoV-2, can be effectively targeted due to its viral replication and pathogenesis role. In this study, we have enlisted 88 peptides from the AVPdb database. The peptide molecules were modeled to carry out the docking interactions. The four peptides molecules, P14, P39, P41, and P74, had more binding energy than the rest of the peptides in multiple docking programs. Interestingly, the active points of the main protease from SARS-CoV-2, Cys145, Leu141, Ser139, Phe140, Leu167, and Gln189, showed nonbonded interaction with the peptide molecules. The molecular dynamics simulation study was carried out for 200 ns to find out the docked complex's stability where their stability index was proved to be positive compared to the apo and control complex. Our computational works based on peptide molecules may aid the future development of therapeutic options against SARS-CoV-2.

19.
Front Mol Biosci ; 8: 635245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869282

RESUMO

With the current outbreak caused by SARS-CoV-2, vaccination is acclaimed as a public health care priority. Rapid genetic sequencing of SARS-CoV-2 has triggered the scientific community to search for effective vaccines. Collaborative approaches from research institutes and biotech companies have acknowledged the use of viral proteins as potential vaccine candidates against COVID-19. Nucleic acid (DNA or RNA) vaccines are considered the next generation vaccines as they can be rapidly designed to encode any desirable viral sequence including the highly conserved antigen sequences. RNA vaccines being less prone to host genome integration (cons of DNA vaccines) and anti-vector immunity (a compromising factor of viral vectors) offer great potential as front-runners for universal COVID-19 vaccine. The proof of concept for RNA-based vaccines has already been proven in humans, and the prospects for commercialization are very encouraging as well. With the emergence of COVID-19, mRNA-1273, an mRNA vaccine developed by Moderna, Inc. was the first to enter human trials, with the first volunteer receiving the dose within 10 weeks after SARS-CoV-2 genetic sequencing. The recent interest in mRNA vaccines has been fueled by the state of the art technologies that enhance mRNA stability and improve vaccine delivery. Interestingly, as per the "Draft landscape of COVID-19 candidate vaccines" published by the World Health Organization (WHO) on December 29, 2020, seven potential RNA based COVID-19 vaccines are in different stages of clinical trials; of them, two candidates already received emergency use authorization, and another 22 potential candidates are undergoing pre-clinical investigations. This review will shed light on the rationality of RNA as a platform for vaccine development against COVID-19, highlighting the possible pros and cons, lessons learned from the past, and the future prospects.

20.
Front Mol Biosci ; 8: 604447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763450

RESUMO

Coronavirus disease (COVID-19) has emerged as a fast-paced epidemic in late 2019 which is disrupting life-saving immunization services. SARS-CoV-2 is a highly transmissible virus and an infectious disease that has caused fear among people across the world. The worldwide emergence and rapid expansion of SARS-CoV-2 emphasizes the need for exploring innovative therapeutic approaches to combat SARS-CoV-2. The efficacy of some antiviral drugs such as remdesivir, favipiravir, umifenovir, etc., are still tested against SARS-CoV-2. Additionally, there is a large global effort to develop vaccines for the protection against COVID-19. Because vaccines seem the best solution to control the pandemic but time is required for its development, pre-clinical/clinical trials, approval from FDA and scale-up. The nano-based approach is another promising approach to combat COVID-19 owing to unique physicochemical properties of nanomaterials. Peptide based vaccines emerged as promising vaccine candidates for SARS-CoV-2. The study emphasizes the current therapeutic approaches against SARS-CoV-2 and some of the potential candidates for SARS-CoV-2 treatment which are still under clinical studies for their effectiveness against SARS-CoV-2. Overall, it is of high importance to mention that clinical trials are necessary for confirming promising drug candidates and effective vaccines and the safety profile of the new components must be evaluated before translation of in vitro studies for implementation in clinical use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA