Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Ther Methods Clin Dev ; 19: 438-446, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33294492

RESUMO

Current approaches for hematopoietic stem cell gene therapy typically involve lentiviral gene transfer in tandem with a conditioning regimen to aid stem cell engraftment. Although many pseudotyped envelopes have the capacity to be immunogenic due to their viral origins, thus far immune responses against the most common envelope, vesicular stomatitis virus glycoprotein G (VSV-G), have not been reported in hematopoietic stem cell gene therapy trials. Herein, we report on two Fanconi anemia patients who underwent autologous transplantation of a lineage-depleted, gene-modified hematopoietic stem cell product without conditioning. We observed the induction of robust VSV-G-specific immunity, consistent with low/undetectable gene marking in both patients. Upon further interrogation, adaptive immune mechanisms directed against VSV-G were detected following transplantation in both patients, including increased VSV-G-specific T cell responses, anti-VSV-G immunoglobulin G (IgG), and cytotoxic responses that can specifically kill VSV-G-expressing target cell lines. A proportion of healthy controls also displayed preexisting VSV-G-specific CD4+ and CD8+ T cell responses, as well as VSV-G-specific IgG. Taken together, these data show that VSV-G-pseudotyped lentiviral vectors have the ability to elicit interfering adaptive immune responses in the context of certain hematopoietic stem cell transplantation settings.

2.
Haematologica ; 103(11): 1806-1814, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29976742

RESUMO

A hallmark of Fanconi anemia is accelerated decline in hematopoietic stem and progenitor cells (CD34 +) leading to bone marrow failure. Long-term treatment requires hematopoietic cell transplantation from an unaffected donor but is associated with potentially severe side-effects. Gene therapy to correct the genetic defect in the patient's own CD34+ cells has been limited by low CD34+ cell numbers and viability. Here we demonstrate an altered ratio of CD34Hi to CD34Lo cells in Fanconi patients relative to healthy donors, with exclusive in vitro repopulating ability in only CD34Hi cells, underscoring a need for novel strategies to preserve limited CD34+ cells. To address this need, we developed a clinical protocol to deplete lineage+(CD3+, CD14+, CD16+ and CD19+) cells from blood and marrow products. This process depletes >90% of lineage+cells while retaining ≥60% of the initial CD34+cell fraction, reduces total nucleated cells by 1-2 logs, and maintains transduction efficiency and cell viability following gene transfer. Importantly, transduced lineage- cell products engrafted equivalently to that of purified CD34+ cells from the same donor when xenotransplanted at matched CD34+ cell doses. This novel selection strategy has been approved by the regulatory agencies in a gene therapy study for Fanconi anemia patients (NCI Clinical Trial Reporting Program Registry ID NCI-2011-00202; clinicaltrials.gov identifier: 01331018).


Assuntos
Proteína do Grupo de Complementação A da Anemia de Fanconi , Anemia de Fanconi , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Transdução Genética , Autoenxertos , Criança , Pré-Escolar , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Anemia de Fanconi/terapia , Proteína do Grupo de Complementação A da Anemia de Fanconi/biossíntese , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Feminino , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Masculino , Pessoa de Meia-Idade
3.
Hum Gene Ther ; 26(6): 399-406, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25919226

RESUMO

Most hematopoietic stem cell gene therapy studies require host conditioning to allow for efficient engraftment of gene-modified cells. Conditioning regimens with lower treatment-related toxicities are especially relevant for the treatment of nonmalignant blood disorders, such as hemoglobinopathies and immunodeficiencies, and for patients who are otherwise ineligible for conventional high-dose conditioning. Radioimmunotherapy, which employs an α- or a ß-emitting radionuclide conjugated to a targeting antibody, is effective for delivering cytotoxic doses of radiation to a cell type of interest while minimizing off-target toxicity. Here, we demonstrate the feasibility of using a nonmyeloablative dose of a monoclonal anti-CD45 antibody conjugated to the α-emitter Astatine-211 ((211)At) to promote engraftment of an autologous gene-modified stem cell graft in the canine model. The doses used provided myelosuppression with rapid autologous recovery and minimal off-target toxicity. Engraftment levels were low in all dogs and reflected the low numbers of gene-modified cells infused. Our data suggest that a cell dose exceeding 1×10(6) cells/kg be used with nonmyeloablative doses of (211)At-anti-CD45 monoclonal antibodies for sustained engraftment in the dog model.


Assuntos
Astato/química , Terapia Genética/métodos , Antígenos Comuns de Leucócito/imunologia , Condicionamento Pré-Transplante/métodos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/toxicidade , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Cães , Transplante de Células-Tronco Hematopoéticas , Transgenes , Proteínas Supressoras de Tumor/genética
4.
J Clin Invest ; 125(3): 1243-54, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25664855

RESUMO

Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC-derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina-induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain-null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood-derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence.


Assuntos
Endotélio Vascular/citologia , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Multipotentes/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/fisiologia , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Humanos , Macaca nemestrina , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Nicho de Células-Tronco
5.
Hum Gene Ther ; 25(12): 1013-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24937231

RESUMO

Minimal conditioning or even no conditioning would be the preferred preparation for most gene therapy applications for nonmalignant diseases. However, reduced intensity conditioning (RIC) regimens in patients with nonhematologic malignancies have not led to long-term engraftment unless a selective advantage was present for the transplanted donor cells. Similar findings have also been observed in a number of large animal studies. Inadequate myelosuppression levels were thought to be responsible for the outcomes. To address this issue several innovative protocols in small animals have been presented with selective hematopoietic myelosuppression and less systemic toxicity. Such protocols promised to curb the transplant-related morbidity and mortality in myeloablative conditioning and provide effective long-term engraftment, especially in patients with gene-corrected autografts. In the present study we have tested some of these promising RIC regimens in nonhuman primates, a clinically relevant large animal model. Our data suggest that transient myelosuppression induced by anti-c-Kit antibody in conjunction with low-dose irradiation may lead to long-term engraftment, albeit at low levels. The animals with busulfan conditioning with or without anti-c-Kit that received gene-modified autologous transplants with green fluorescent protein expression had similar myelosuppression, but failed long-term engraftment and despite immunosuppressive treatment had all the hallmarks seen previously in similar models without immunosuppression. Our preliminary data expand current knowledge of RIC and emphasize the need to explore whether specific and directed myelosuppression alone is adequate in the absence of microenvironmental modulation, or whether innovative combinations are necessary for safe and effective engraftment.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Imunossupressores/administração & dosagem , Condicionamento Pré-Transplante , Animais , Antígenos CD34/imunologia , Modelos Animais de Doenças , Humanos , Terapia de Imunossupressão/métodos , Lentivirus/genética , Lentivirus/imunologia , Macaca/imunologia , Transplante Autólogo
6.
Blood ; 120(13): e35-44, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22898598

RESUMO

Induced pluripotent stem cell (iPSC) therapeutics are a promising treatment for genetic and infectious diseases. To assess engraftment, risk of neoplastic formation, and therapeutic benefit in an autologous setting, testing iPSC therapeutics in an appropriate model, such as the pigtail macaque (Macaca nemestrina; Mn), is crucial. Here, we developed a chemically defined, scalable, and reproducible specification protocol with bone morphogenetic protein 4, prostaglandin-E2 (PGE2), and StemRegenin 1 (SR1) for hematopoietic differentiation of Mn iPSCs. Sequential coculture with bone morphogenetic protein 4, PGE2, and SR1 led to robust Mn iPSC hematopoietic progenitor cell formation. The combination of PGE2 and SR1 increased CD34(+)CD38(-)Thy1(+)CD45RA(-)CD49f(+) cell yield by 6-fold. CD34(+)CD38(-)Thy1(+)CD45RA(-)CD49f(+) cells isolated on the basis of CD34 expression and cultured in SR1 expanded 3-fold and maintained this long-term repopulating HSC phenotype. Purified CD34(high) cells exhibited 4-fold greater hematopoietic colony-forming potential compared with unsorted hematopoietic progenitors and had bilineage differentiation potential. On the basis of these studies, we calculated the cell yields that must be achieved at each stage to meet a threshold CD34(+) cell dose that is required for engraftment in the pigtail macaque. Our protocol will support scale-up and testing of iPSC-derived CD34(high) cell therapies in a clinically relevant nonhuman primate model.


Assuntos
Antígenos CD34/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Western Blotting , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Linhagem da Célula , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Dinoprostona/genética , Dinoprostona/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Linfócitos/citologia , Linfócitos/metabolismo , Macaca , Células Mieloides/citologia , Células Mieloides/metabolismo , Purinas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Internalização do Vírus , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA