Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(24): 11578-11585, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38051017

RESUMO

We report the growth of high-quality GaN epitaxial thin films on graphene-coated c-sapphire substrates using pulsed-mode metalorganic vapor-phase epitaxy, together with the fabrication of freestanding GaN films by simple mechanical exfoliation for transferable light-emitting diodes (LEDs). High-quality GaN films grown on the graphene-coated sapphire substrates were easily lifted off by using thermal release tape and transferred onto foreign substrates. Furthermore, we revealed that the pulsed operation of ammonia flow during GaN growth was a critical factor for the fabrication of high-quality freestanding GaN films. These films, exhibiting excellent single crystallinity, were utilized to fabricate transferable GaN LEDs by heteroepitaxially growing InxGa1-xN/GaN multiple quantum wells and a p-GaN layer on the GaN films, showing their potential application in advanced optoelectronic devices.

2.
Sci Adv ; 9(42): eadj5379, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862426

RESUMO

The concept of remote epitaxy involves a two-dimensional van der Waals layer covering the substrate surface, which still enable adatoms to follow the atomic motif of the underlying substrate. The mode of growth must be carefully defined as defects, e.g., pinholes, in two-dimensional materials can allow direct epitaxy from the substrate, which, in combination with lateral epitaxial overgrowth, could also form an epilayer. Here, we show several unique cases that can only be observed for remote epitaxy, distinguishable from other two-dimensional material-based epitaxy mechanisms. We first grow BaTiO3 on patterned graphene to establish a condition for minimizing epitaxial lateral overgrowth. By observing entire nanometer-scale nuclei grown aligned to the substrate on pinhole-free graphene confirmed by high-resolution scanning transmission electron microscopy, we visually confirm that remote epitaxy is operative at the atomic scale. Macroscopically, we also show variations in the density of GaN microcrystal arrays that depend on the ionicity of substrates and the number of graphene layers.

3.
Nat Nanotechnol ; 18(5): 464-470, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941360

RESUMO

Layer transfer techniques have been extensively explored for semiconductor device fabrication as a path to reduce costs and to form heterogeneously integrated devices. These techniques entail isolating epitaxial layers from an expensive donor wafer to form freestanding membranes. However, current layer transfer processes are still low-throughput and too expensive to be commercially suitable. Here we report a high-throughput layer transfer technique that can produce multiple compound semiconductor membranes from a single wafer. We directly grow two-dimensional (2D) materials on III-N and III-V substrates using epitaxy tools, which enables a scheme comprised of multiple alternating layers of 2D materials and epilayers that can be formed by a single growth run. Each epilayer in the multistack structure is then harvested by layer-by-layer mechanical exfoliation, producing multiple freestanding membranes from a single wafer without involving time-consuming processes such as sacrificial layer etching or wafer polishing. Moreover, atomic-precision exfoliation at the 2D interface allows for the recycling of the wafers for subsequent membrane production, with the potential for greatly reducing the manufacturing cost.

4.
Nature ; 614(7946): 81-87, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725999

RESUMO

Micro-LEDs (µLEDs) have been explored for augmented and virtual reality display applications that require extremely high pixels per inch and luminance1,2. However, conventional manufacturing processes based on the lateral assembly of red, green and blue (RGB) µLEDs have limitations in enhancing pixel density3-6. Recent demonstrations of vertical µLED displays have attempted to address this issue by stacking freestanding RGB LED membranes and fabricating top-down7-14, but minimization of the lateral dimensions of stacked µLEDs has been difficult. Here we report full-colour, vertically stacked µLEDs that achieve, to our knowledge, the highest array density (5,100 pixels per inch) and the smallest size (4 µm) reported to date. This is enabled by a two-dimensional materials-based layer transfer technique15-18 that allows the growth of RGB LEDs of near-submicron thickness on two-dimensional material-coated substrates via remote or van der Waals epitaxy, mechanical release and stacking of LEDs, followed by top-down fabrication. The smallest-ever stack height of around 9 µm is the key enabler for record high µLED array density. We also demonstrate vertical integration of blue µLEDs with silicon membrane transistors for active matrix operation. These results establish routes to creating full-colour µLED displays for augmented and virtual reality, while also offering a generalizable platform for broader classes of three-dimensional integrated devices.

5.
Nature ; 614(7946): 88-94, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653458

RESUMO

Two-dimensional (2D) materials and their heterostructures show a promising path for next-generation electronics1-3. Nevertheless, 2D-based electronics have not been commercialized, owing mainly to three critical challenges: i) precise kinetic control of layer-by-layer 2D material growth, ii) maintaining a single domain during the growth, and iii) wafer-scale controllability of layer numbers and crystallinity. Here we introduce a deterministic, confined-growth technique that can tackle these three issues simultaneously, thus obtaining wafer-scale single-domain 2D monolayer arrays and their heterostructures on arbitrary substrates. We geometrically confine the growth of the first set of nuclei by defining a selective growth area via patterning SiO2 masks on two-inch substrates. Owing to substantial reduction of the growth duration at the micrometre-scale SiO2 trenches, we obtain wafer-scale single-domain monolayer WSe2 arrays on the arbitrary substrates by filling the trenches via short growth of the first set of nuclei, before the second set of nuclei is introduced, thus without requiring epitaxial seeding. Further growth of transition metal dichalcogenides with the same principle yields the formation of single-domain MoS2/WSe2 heterostructures. Our achievement will lay a strong foundation for 2D materials to fit into industrial settings.

6.
Nat Nanotechnol ; 17(10): 1054-1059, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36138198

RESUMO

Heterogeneous integration of single-crystal materials offers great opportunities for advanced device platforms and functional systems1. Although substantial efforts have been made to co-integrate active device layers by heteroepitaxy, the mismatch in lattice polarity and lattice constants has been limiting the quality of the grown materials2. Layer transfer methods as an alternative approach, on the other hand, suffer from the limited availability of transferrable materials and transfer-process-related obstacles3. Here, we introduce graphene nanopatterns as an advanced heterointegration platform that allows the creation of a broad spectrum of freestanding single-crystalline membranes with substantially reduced defects, ranging from non-polar materials to polar materials and from low-bandgap to high-bandgap semiconductors. Additionally, we unveil unique mechanisms to substantially reduce crystallographic defects such as misfit dislocations, threading dislocations and antiphase boundaries in lattice- and polarity-mismatched heteroepitaxial systems, owing to the flexibility and chemical inertness of graphene nanopatterns. More importantly, we develop a comprehensive mechanics theory to precisely guide cracks through the graphene layer, and demonstrate the successful exfoliation of any epitaxial overlayers grown on the graphene nanopatterns. Thus, this approach has the potential to revolutionize the heterogeneous integration of dissimilar materials by widening the choice of materials and offering flexibility in designing heterointegrated systems.

7.
Sci Adv ; 7(52): eabi5833, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936435

RESUMO

The electronic structure of heterointerfaces is a pivotal factor for their device functionality. We use soft x-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures on both sides of the Schottky heterointerface formed by epitaxial films of the superconducting NbN on semiconducting GaN, and determine their momentum-dependent interfacial band offset as well as the band-bending profile. We find, in particular, that the Fermi states in NbN are well separated in energy and momentum from the states in GaN, excluding any notable electronic cross-talk of the superconducting states in NbN to GaN. We support the experimental findings with first-principles calculations for bulk NbN and GaN. The Schottky barrier height obtained from photoemission is corroborated by electronic transport and optical measurements. The momentum-resolved understanding of electronic properties of interfaces elucidated in our work opens up new frontiers for the quantum materials where interfacial states play a defining role.

8.
Sci Adv ; 7(8)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33608281

RESUMO

Creating seamless heterostructures that exhibit the quantum Hall effect and superconductivity is highly desirable for future electronics based on topological quantum computing. However, the two topologically robust electronic phases are typically incompatible owing to conflicting magnetic field requirements. Combined advances in the epitaxial growth of a nitride superconductor with a high critical temperature and a subsequent nitride semiconductor heterostructure of metal polarity enable the observation of clean integer quantum Hall effect in the polarization-induced two-dimensional (2D) electron gas of the high-electron mobility transistor. Through individual magnetotransport measurements of the spatially separated GaN 2D electron gas and superconducting NbN layers, we find a small window of magnetic fields and temperatures in which the epitaxial layers retain their respective quantum Hall and superconducting properties. Its analysis indicates that in epitaxial nitride superconductor/semiconductor heterostructures, this window can be significantly expanded, creating an industrially viable platform for robust quantum devices that exploit topologically protected transport.

9.
Sci Adv ; 7(2)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523991

RESUMO

Ultrawide-bandgap semiconductors are ushering in the next generation of high-power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here, it is found that single-crystalline layers of α-(AlGa)2O3 alloys spanning bandgaps of 5.4 to 8.6 eV can be grown by molecular beam epitaxy. The key step is found to be the use of m-plane sapphire crystal. The phase transition of the epitaxial layers from the α- to the narrower bandgap ß-phase is catalyzed by the c-plane of the crystal. Because the c-plane is orthogonal to the growth front of the m-plane surface of the crystal, the narrower bandgap pathways are eliminated, revealing a route to much wider bandgap materials with structural purity. The resulting energy bandgaps of the epitaxial layers span a broad range, heralding the successful epitaxial stabilization of the largest bandgap materials family to date.

10.
ACS Energy Lett ; 4(9): 2185-2191, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31544150

RESUMO

The observation of extraordinarily high conductivity in delafossite-type PdCoO2 is of great current interest, and there is some evidence that electrons behave like a fluid when flowing in bulk crystals of PdCoO2. Thus, this material is an ideal platform for the study of the electron transfer processes in heterogeneous reactions. Here, we report the use of bulk single-crystal PdCoO2 as a promising electrocatalyst for hydrogen evolution reactions (HERs). An overpotential of only 31 mV results in a current density of 10 mA cm-2, accompanied by high long-term stability. We have precisely determined that the crystal surface structure is modified after electrochemical activation with the formation of strained Pd nanoclusters in the surface layer. These nanoclusters exhibit reversible hydrogen sorption and desorption, creating more active sites for hydrogen access. The bulk PdCoO2 single crystal with ultrahigh conductivity, which acts as a natural substrate for the Pd nanoclusters, provides a high-speed channel for electron transfer.

11.
Nano Lett ; 19(6): 3663-3670, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31046294

RESUMO

Spin-orbit torques (SOT) in thin film heterostructures originate from strong spin-orbit interactions (SOI) that, in the bulk, generate a spin current due either to extrinsic spin-dependent, skew, or/and side-jump scattering or to intrinsic Berry curvature in the conduction bands. While most SOT studies have focused on materials with heavy metal components, the oxide perovskite SrRuO3 has been predicted to have a pronounced Berry curvature. Through quantification of its spin current by the SOT exerted on an adjacent Co ferromagnetic layer, we determine that SrRuO3 has a strongly temperature ( T)-dependent spin Hall conductivity σ SH, increasing with the electrical conductivity, consistent with expected behavior of the intrinsic effect in the "dirty metal" regime. σ SH is very high at low T, e.g., σ SH > (ℏ/2 e)3 × 105 Ω-1 m-1 at 60 K, and is largely unaffected by the SrRuO3 ferromagnetic transition at T c ≈ 150 K, which agrees with a recent theoretical determination that the intrinsic spin Hall effect is magnetization independent. Below T c smaller nonstandard SOT components also develop associated with the magnetism of the oxide. Our results are consistent with the degree of RuO6 octahedral tilt being correlated with the strength of the SOI in this complex oxide, as predicted by recent theoretical work on strontium iridate. These results establish SrRuO3 as a very promising candidate material for implementing strong spintronics functionalities in oxide electronics.

12.
Nano Lett ; 17(10): 5883-5890, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28872318

RESUMO

Diverse topological defects arise in hexagonal manganites, such as ferroelectric vortices, as well as neutral and charged domain walls. The topological defects are intriguing because their low symmetry enables unusual couplings between structural, charge, and spin degrees of freedom, holding great potential for novel types of functional 2D and 1D systems. Despite the considerable advances in analyzing the different topological defects in hexagonal manganites, the understanding of their key intrinsic properties is still rather limited and disconnected. In particular, a rapidly increasing number of structural variants is reported without clarifying their relation, leading to a zoo of seemingly unrelated topological textures. Here, we combine picometer-precise scanning-transmission-electron microscopy with Landau theory modeling to clarify the inner structure of topological defects in Er1-xZrxMnO3. By performing a comprehensive parametrization of the inner atomic defect structure, we demonstrate that one primary length scale drives the morphology of both vortices and domain walls. Our findings lead to a unifying general picture of this type of structural topological defects. We further derive novel fundamental and universal properties, such as unusual bound-charge distributions and electrostatics at the ferroelectric vortex cores with emergent U(1) symmetry.

13.
Microsc Microanal ; 22(1): 237-49, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26750260

RESUMO

We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Transmissão e Varredura/instrumentação , Microscopia Eletrônica de Transmissão e Varredura/métodos , Imagem Óptica/instrumentação , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA