Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(35): e2208795119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36001691

RESUMO

The superior photosynthetic efficiency of C4 leaves over C3 leaves is owing to their unique Kranz anatomy, in which the vein is surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. Kranz anatomy development starts from three contiguous ground meristem (GM) cells, but its regulators and underlying molecular mechanism are largely unknown. To identify the regulators, we obtained the transcriptomes of 11 maize embryonic leaf cell types from five stages of pre-Kranz cells starting from median GM cells and six stages of pre-M cells starting from undifferentiated cells. Principal component and clustering analyses of transcriptomic data revealed rapid pre-Kranz cell differentiation in the first two stages but slow differentiation in the last three stages, suggesting early Kranz cell fate determination. In contrast, pre-M cells exhibit a more prolonged transcriptional differentiation process. Differential gene expression and coexpression analyses identified gene coexpression modules, one of which included 3 auxin transporter and 18 transcription factor (TF) genes, including known regulators of Kranz anatomy and/or vascular development. In situ hybridization of 11 TF genes validated their expression in early Kranz development. We determined the binding motifs of 15 TFs, predicted TF target gene relationships among the 18 TF and 3 auxin transporter genes, and validated 67 predictions by electrophoresis mobility shift assay. From these data, we constructed a gene regulatory network for Kranz development. Our study sheds light on the regulation of early maize leaf development and provides candidate leaf development regulators for future study.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Transcriptoma , Zea mays , Ácidos Indolacéticos/metabolismo , Microdissecção e Captura a Laser , Fotossíntese/genética , Folhas de Planta/embriologia , Folhas de Planta/genética , Zea mays/enzimologia , Zea mays/genética
2.
Plant Physiol ; 188(1): 442-459, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34747472

RESUMO

Chloroplasts are the sites for photosynthesis, and two Golden2-like factors act as transcriptional activators of chloroplast development in rice (Oryza sativa L.) and maize (Zea mays L.). Rice OsGLK1 and OsGLK2 are orthologous to maize ZmGLK1 (ZmG1) and ZmGLK2 (ZmG2), respectively. However, while rice OsGLK1 and OsGLK2 act redundantly to regulate chloroplast development in mesophyll cells, maize ZmG1 and ZmG2 are functionally specialized and expressed in different cell-specific manners. To boost rice chloroplast development and photosynthesis, we generated transgenic rice plants overexpressing ZmG1 and ZmG2, individually or simultaneously, with constitutive promoters (pZmUbi::ZmG1 and p35S::ZmG2) or maize promoters (pZmG1::ZmG1, pZmG2::ZmG2, and pZmG1::ZmG1/pZmG2::ZmG2). Both ZmG1 and ZmG2 genes were highly expressed in transgenic rice leaves. Moreover, ZmG1 and ZmG2 showed coordinated expression in pZmG1::ZmG1/pZmG2::ZmG2 plants. All Golden2-like (GLK) transgenic plants had higher chlorophyll and protein contents, Rubisco activities and photosynthetic rates per unit leaf area in flag leaves. However, the highest grain yields occurred when maize promoters were used; pZmG1::ZmG1, pZmG2::ZmG2, and pZmG1::ZmG1/pZmG2::ZmG2 transgenic plants showed increases in grain yield by 51%, 47%, and 70%, respectively. In contrast, the pZmUbi::ZmG1 plant produced smaller seeds without yield increases. Transcriptome analysis indicated that maize GLKs act as master regulators promoting the expression of both photosynthesis-related and stress-responsive regulatory genes in both rice shoot and root. Thus, by promoting these important functions under the control of their own promoters, maize GLK1 and GLK2 genes together dramatically improved rice photosynthetic performance and productivity. A similar approach can potentially improve the productivity of many other crops.


Assuntos
Cloroplastos/genética , Cloroplastos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Fotossíntese/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Zea mays/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Fatores de Transcrição/genética
4.
Proc Natl Acad Sci U S A ; 117(35): 21747-21756, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817425

RESUMO

Arabidopsis AINTEGUMENTA (ANT), an AP2 transcription factor, is known to control plant growth and floral organogenesis. In this study, our transcriptome analysis and in situ hybridization assays of maize embryonic leaves suggested that maize ANT1 (ZmANT1) regulates vascular development. To better understand ANT1 functions, we determined the binding motif of ZmANT1 and then showed that ZmANT1 binds the promoters of millet SCR1, GNC, and AN3, which are key regulators of Kranz anatomy, chloroplast development, and plant growth, respectively. We generated a mutant with a single-codon deletion and two frameshift mutants of the ANT1 ortholog in the C4 millet Setaria viridis by the CRISPR/Cas9 technique. The two frameshift mutants displayed reduced photosynthesis efficiency and growth rate, smaller leaves, and lower grain yields than wild-type (WT) plants. Moreover, their leaves sporadically exhibited distorted Kranz anatomy and vein spacing. Conducting transcriptomic analysis of developing leaves in the WT and the three mutants we identified differentially expressed genes (DEGs) in the two frameshift mutant lines and found many down-regulated DEGs enriched in photosynthesis, heme, tetrapyrrole binding, and antioxidant activity. In addition, we predicted many target genes of ZmANT1 and chose 13 of them to confirm binding of ZmANT1 to their promoters. Based on the above observations, we proposed a model for ANT1 regulation of cell proliferation and leaf growth, vascular and vein development, chloroplast development, and photosynthesis through its target genes. Our study revealed biological roles of ANT1 in several developmental processes beyond its known roles in plant growth and floral organogenesis.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Translocador 1 do Nucleotídeo Adenina/fisiologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cloroplastos/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Milhetes/genética , Milhetes/metabolismo , Organogênese Vegetal/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Desenvolvimento Vegetal/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Transcriptoma
5.
Biosens Bioelectron ; 20(1): 127-31, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15142585

RESUMO

The Photoluminescence of quantum dots have been found to be a useful tool for the detection of small to medium sized analyte molecules in a host-guest environment. By the incorporation of quantum dots into molecularly imprinted polymers, which can offer shape and selectivity, the former can respond by quenching the photoluminescence emission upon template binding. In this work host polymers were synthesized and cased into thin films using functional monomers such as methacrylic acid (MAA), CdSe/ZnS core-shell derivatized with 4-vinyl pyridine and ethylene glycol dimethacrylic acid (EGDMA) as a cross-linker. The intensity of photoluminescence emission is detected upon analyte binding.


Assuntos
Compostos de Cádmio/química , Cafeína/análise , Medições Luminescentes/instrumentação , Fotoquímica/instrumentação , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Transdutores , Compostos de Zinco/química , Materiais Revestidos Biocompatíveis/química , Desenho de Equipamento , Análise de Falha de Equipamento , Medições Luminescentes/métodos , Fotoquímica/métodos
6.
J Chromatogr A ; 1027(1-2): 259-62, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14971510

RESUMO

Incorporation of semiconductor nanoparticles into molecularly imprinted polymer provides a sensor material which can be easily shaped and with better selectivity because the bound template would quench the photoluminescence (PL) emission of quantum dots significantly. In this work, artificial receptors of various templates were synthesized with functional monomers such as methacrylic acid (MAA), semiconductor like CdSe/ZnS core-shell derivatized with 4-vinylpyridine and ethylene glycol dimethacrylic acid as the cross-linker. The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and template molecules. The photoluminescence emission is unaffected upon incubation of analyte with the blank control polymer.


Assuntos
Medições Luminescentes , Miniaturização , Tamanho da Partícula , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA