Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO Rep ; 24(12): e57164, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37965920

RESUMO

A high-salt diet (HSD) elicits sustained sterile inflammation and worsens tissue injury. However, how this occurs after stroke, a leading cause of morbidity and mortality, remains unknown. Here, we report that HSD impairs long-term brain recovery after intracerebral hemorrhage, a severe form of stroke, despite salt withdrawal prior to the injury. Mechanistically, HSD induces innate immune priming and training in hematopoietic stem and progenitor cells (HSPCs) by downregulation of NR4a family and mitochondrial oxidative phosphorylation. This training compromises alternative activation of monocyte-derived macrophages (MDMs) without altering the initial inflammatory responses of the stroke brain. Healthy mice transplanted with bone marrow from HSD-fed mice retain signatures of reduced MDM reparative functions, further confirming a persistent form of innate immune memory that originates in the bone marrow. Loss of NR4a1 in macrophages recapitulates HSD-induced negative impacts on stroke outcomes while gain of NR4a1 enables stroke recovery in HSD animals. Together, we provide the first evidence that links HSD-induced innate immune memory to the acquisition of persistent dysregulated inflammatory responses and unveils NR4a1 as a potential therapeutic target.


Assuntos
Acidente Vascular Cerebral , Imunidade Treinada , Camundongos , Animais , Macrófagos , Inflamação , Cloreto de Sódio na Dieta/efeitos adversos , Dieta , Imunidade Inata
2.
Stroke ; 53(3): 987-998, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35144488

RESUMO

BACKGROUND: Promotion of hematoma resolution in a timely manner reduces intracerebral hemorrhage (ICH) brain injury induced by toxic blood components and subsequent neuroinflammation. The meningeal lymphatic system is responsible for clearance of macromolecules and pathogenic substances from the central nervous system; however, its role in intraparenchymal hematoma clearance and ICH outcomes is unknown. In the present study, we aimed to understand the contribution of the meningeal lymphatic system to ICH pathologies and to test whether pharmacological enhancement of meningeal lymphatic function promotes hematoma resolution and brain recovery after ICH. METHODS: Immunofluorescence of whole-mount meninges was used to measure complexity and coverage level of meningeal lymphatic vasculature following ICH induction. Fluorescent microbeads and PKH-26-labeled erythrocytes were used to evaluate drainage function of the meningeal lymphatic system. Visudyne treatment, deep cervical lymph node ligation, and VEGF (vascular endothelial growth factor)-C injection were performed to manipulate meningeal lymphatic function. Neurobehavioral performance and hematoma volume were assayed by the cylinder test and histological measurements. Iron deposition, residual erythrocytes, neuronal loss, and astrogliosis were assessed by immunohistochemistry and antibody-based fluorescence staining. RESULTS: Meningeal lymphangiogenesis and enhanced lymphatic drainage occurred during the late phase of ICH. Ablation and blockage of meningeal lymphatic vessels impeded hematoma clearance, whereas pharmacological enhancement of their function reduced hematoma volume, improved behavioral performance, and reduced brain residual erythrocytes, iron deposition, neuronal loss, and astroglial activation. CONCLUSIONS: Early enhancement of meningeal lymphatic function is beneficial for ICH recovery. Targeting the meningeal lymphatic system is therefore a potential therapeutic approach for treating ICH.


Assuntos
Encéfalo/patologia , Hemorragia Cerebral/patologia , Linfangiogênese/fisiologia , Sistema Linfático/patologia , Meninges/patologia , Animais , Encéfalo/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Cilostazol/farmacologia , Cilostazol/uso terapêutico , Linfangiogênese/efeitos dos fármacos , Sistema Linfático/efeitos dos fármacos , Masculino , Meninges/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
3.
PLoS One ; 16(12): e0261640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34910780

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0097423.].

4.
J Neuroinflammation ; 18(1): 286, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893068

RESUMO

BACKGROUND: TREM2 is a microglial receptor genetically linked to the risk for Alzheimer's disease (AD). The cerebrospinal fluid (CSF) levels of soluble TREM2 (sTREM2) have emerged as a valuable biomarker for the disease progression in AD and higher CSF levels of sTREM2 are linked to slower cognitive decline. Increasing sTREM2 in mouse models of amyloidosis reduces amyloid-related pathology through modulating microglial functions, suggesting a beneficial role of sTREM2 in microglia biology and AD pathology. METHODS: In the current study, we performed serial C- and N-terminal truncations of sTREM2 protein to define the minimal sequence requirement for sTREM2 function. We initially assessed the impacts of sTREM2 mutants on microglial functions by measuring cell viability and inflammatory responses. The binding of the sTREM2 mutants to oligomeric Aß was determined by solid-phase protein binding assay and dot blot assay. We further evaluated the impacts of sTREM2 mutants on amyloid-related pathology by direct stereotaxic injection of sTREM2 proteins into the brain of 5xFAD mice. RESULTS: We found that both sTREM2 fragments 41-81 and 51-81 enhance cell viability and inflammatory responses in primary microglia. However, the fragment 51-81 exhibited impaired affinity to oligomeric Aß. When administrated to the 5xFAD mice brain, the sTREM2 fragment 41-81, but not 51-81, increased the number of plaque-associated microglia and reduced the plaque deposition. Interestingly, the fragment 41-81 was more efficient than the physiological form of sTREM2 in ameliorating Aß-related pathology. CONCLUSIONS: Our results indicate that the interaction of sTREM2 truncated variants with Aß is essential for enhancing microglial recruitment to the vicinity of an amyloid plaque and reducing the plaque load. Importantly, we identified a 41-amino acid sequence of sTREM2 that is sufficient for modulating microglial functions and more potent than the full-length sTREM2 in reducing the plaque load and the plaque-associated neurotoxicity. Taken together, our data provide more insights into the mechanisms underlying sTREM2 function and the minimal active sTREM2 sequence represents a promising candidate for AD therapy.


Assuntos
Amiloidose/genética , Amiloidose/patologia , Encéfalo/patologia , Glicoproteínas de Membrana/genética , Microglia/patologia , Fenótipo , Receptores Imunológicos/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos
5.
Brain ; 144(11): 3371-3380, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34515756

RESUMO

Cerebral small vessel disease is one of the most common causes of cognitive decline and stroke. While several lines of evidence have established a relationship between inflammation and cerebrovascular pathology, the mechanistic link has not yet been elucidated. Recent studies suggest activation of immune mediators, including the soluble form of triggering receptor expressed on myeloid cells 2 (TREM2), may be critical regulators. In this study, we compared the plasma levels of soluble TREM2 and its correlations with neuroimaging markers and cerebral amyloid load in 10 patients with Alzheimer's disease and 66 survivors of spontaneous intracerebral haemorrhage with cerebral amyloid angiopathy or hypertensive small vessel disease, two of the most common types of sporadic small vessel disease. We performed brain MRI and 11C-Pittsburgh compound B PET for all participants to evaluate radiological small vessel disease markers and cerebral amyloid burden, and 18F-T807 PET in a subgroup of patients to evaluate cortical tau pathology. Plasma soluble TREM2 levels were comparable between patients with Alzheimer's disease and small vessel disease (P = 0.690). In patients with small vessel disease, plasma soluble TREM2 was significantly associated with white matter hyperintensity volume (P < 0.001), but not with cerebral amyloid load. Among patients with Alzheimer's disease and cerebral amyloid angiopathy, plasma soluble TREM2 was independently associated with a tau-positive scan (P = 0.001) and white matter hyperintensity volume (P = 0.013), but not amyloid load (P = 0.221). Our results indicate plasma soluble TREM2 is associated with white matter hyperintensity independent of amyloid and tau pathology. These findings highlight the potential utility of plasma soluble TREM2 as a strong predictive marker for small vessel disease-related white matter injury and hold clinical implications for targeting the innate immune response when treating this disease.


Assuntos
Doença de Alzheimer/patologia , Angiopatia Amiloide Cerebral/patologia , Doenças de Pequenos Vasos Cerebrais/patologia , Glicoproteínas de Membrana/sangue , Receptores Imunológicos/sangue , Substância Branca/patologia , Idoso , Doença de Alzheimer/sangue , Amiloide/metabolismo , Biomarcadores/sangue , Angiopatia Amiloide Cerebral/sangue , Doenças de Pequenos Vasos Cerebrais/sangue , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
6.
Stroke ; 52(5): 1798-1808, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33840225

RESUMO

Background and Purpose: Brain tissue-resident microglia and monocyte-derived macrophages (MDMs) are innate immune cells that contribute to the inflammatory response, phagocytosis of debris, and tissue repair after injury. We have previously reported that both microglia and MDMs transition from proinflammatory to reparative phenotypes over days after an intracerebral hemorrhage (ICH). However, their individual functional properties in the brain remain largely unknown. Here we characterized the differences between microglia and MDMs and further elucidate their distinct activation states and functional contributions to the pathophysiology and recovery after ICH. Methods: Autologous blood injection was used to model ICH in mice. Longitudinal transcriptomic analyses on isolated microglia and MDMs from mice at days 1, 3, 7 and 10 after ICH and naive controls identified core transcriptional programs that distinguish these cells. Imaging flow cytometry and in vivo phagocytosis assays were used to study phagocytic ability of microglia and MDMs. Antigen presentation was evaluated by ovalbumin-OTII CD4 T-cell proliferation assays with bone marrow­derived macrophages and primary microglia cultures. Results: MDMs had higher phagocytic activity and higher erythrophagocytosis in the ICH brain. Differential gene expression revealed distinct transcriptional signatures in the MDMs and microglia after ICH. MDMs had higher expression of MHCII (major histocompatibility complex class II) genes than microglia at all time points and greater ability to induce antigen-specific T-cell proliferation. Conclusions: The different ontogeny of microglia and MDMs lead to divergent responses and functions in the inflamed brain as these 2 cell populations differ in phagocytic functions and antigen-presenting capabilities in the brain after ICH.


Assuntos
Encéfalo/metabolismo , Hemorragias Intracranianas/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Animais , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Camundongos , Microglia/metabolismo
7.
J Vis Exp ; (160)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32597878

RESUMO

Cerebral contusion is a severe medical problem affecting millions of people worldwide each year. There is an urgent need to understand the pathophysiological mechanism and to develop effective therapeutic strategy for this devastating neurological disorder. Intraparenchymal hemorrhage and post-traumatic inflammatory response induced by initial physical impact can aggravate microglia/macrophage activation and neuroinflammation which subsequently worsen brain pathology. We provide here a controlled cortical impact (CCI) protocol that can reproduce experimental cortical contusion in mice by using a pneumatic impactor system to deliver mechanical force with controllable magnitude and velocity onto the dural surface. This preclinical model allows researchers to induce moderately severe focal cerebral contusion in mice and to investigate a wide range of post-traumatic pathological progressions including hemorrhage contusion, microglia/macrophage activation, iron toxicity, axonal injury, as well as short-term and long-term neurobehavioral deficits. The present protocol can be useful for exploring the long-term effects of and potential interventions for cerebral contusion.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Córtex Cerebral/patologia , Contusões/complicações , Contusões/patologia , Hemorragia/complicações , Hemorragia/patologia , Inflamação/patologia , Animais , Lesões Encefálicas Traumáticas/patologia , Craniotomia , Modelos Animais de Doenças , Inflamação/complicações , Masculino , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Técnicas Estereotáxicas
9.
Stroke ; 51(2): 612-618, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826730

RESUMO

Background and Purpose- Enhancement of erythrophagocytosis by macrophages in a timely manner can limit the toxic effects of erythrocyte metabolites and promote brain recovery after intracerebral hemorrhage (ICH). In the current study, we investigated the therapeutic effect of retinoid X receptor agonist, bexarotene, in facilitating erythrophagocytosis and neurobehavioral recovery in 2 mouse models of ICH. Methods- Bone marrow-derived macrophages and fluorescently labeled erythrocytes were used to study erythrophagocytosis in vitro with phenotypic changes quantified by gene expression. ICH was modeled in vivo using intrastriatal autologous blood and collagenase injection in mice with and without bexarotene treatment beginning 3 hours after ICH. In vivo phagocytosis, ability and hematoma clearance were evaluated by erythrophagocytosis assays, flow cytometry, and histological analysis. Neurological deficits and functional recovery were also quantified. Results- Bexarotene increased macrophage expression of phagocytosis receptors and erythrophagocytosis and reduced macrophage TNF (tumor necrosis factor) production in vitro. In vivo, bexarotene treatment enhanced erythrophagocytosis, reduced hematoma volume, and ultimately improved neurological recovery after ICH in 2 distinct models of ICH. Conclusions- Bexarotene administration is beneficial for recovery after ICH by enhancing hemorrhage phagocytosis, modulating macrophage phenotype, and improving functional recovery.


Assuntos
Bexaroteno/farmacologia , Hemorragia Cerebral/tratamento farmacológico , Hematoma/metabolismo , Fagocitose/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Hematoma/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Microglia/efeitos dos fármacos
10.
Nutrients ; 11(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569604

RESUMO

Traumatic brain injury (TBI) affects millions worldwide with devastating long-term effects on health and cognition. Emerging data suggest that targeting the immune response may offer promising strategies to alleviate TBI outcomes; kahweol, an anti-inflammatory diterpene that remains in unfiltered coffee, has been shown to be beneficial in neuronal recovery. Here, we examined whether kahweol could alleviate brain trauma-induced injury in a mouse model of TBI and its underlying mechanisms. TBI was induced by controlled cortical impact (CCI) and various doses of kahweol were intraperitoneally administered following injury. Contusion volume, brain edema, neurobehavioral deficits, and protein expression and activity were evaluated in both short-term and long-term recovery. We found that kahweol treatments significantly reduced secondary brain injury and improved neurobehavioral outcomes in TBI mice. These changes were accompanied by the attenuation of proinflammatory cytokine secretion, decreased microglia/macrophage activation, and reduction of neutrophil and leukocyte infiltration. In addition, continuous kahweol treatment further improved short-term TBI outcomes compared to single-dosage. Collectively, our data showed that kahweol protects against TBI by reducing immune responses and may serve as a potential therapeutic intervention for TBI patients.


Assuntos
Anti-Inflamatórios/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Diterpenos/farmacologia , Animais , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/etiologia , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Leucócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos
11.
J Clin Invest ; 128(2): 607-624, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29251628

RESUMO

Macrophages are a source of both proinflammatory and restorative functions in damaged tissue through complex dynamic phenotypic changes. Here, we sought to determine whether monocyte-derived macrophages (MDMs) contribute to recovery after acute sterile brain injury. By profiling the transcriptional dynamics of MDMs in the murine brain after experimental intracerebral hemorrhage (ICH), we found robust phenotypic changes in the infiltrating MDMs over time and demonstrated that MDMs are essential for optimal hematoma clearance and neurological recovery. Next, we identified the mechanism by which the engulfment of erythrocytes with exposed phosphatidylserine directly modulated the phenotype of both murine and human MDMs. In mice, loss of receptor tyrosine kinases AXL and MERTK reduced efferocytosis of eryptotic erythrocytes and hematoma clearance, worsened neurological recovery, exacerbated iron deposition, and decreased alternative activation of macrophages after ICH. Patients with higher circulating soluble AXL had poor 1-year outcomes after ICH onset, suggesting that therapeutically augmenting efferocytosis may improve functional outcomes by both reducing tissue injury and promoting the development of reparative macrophage responses. Thus, our results identify the efferocytosis of eryptotic erythrocytes through AXL/MERTK as a critical mechanism modulating macrophage phenotype and contributing to recovery from ICH.


Assuntos
Hemorragia Cerebral/patologia , Eritrócitos/classificação , Macrófagos/citologia , Animais , Apoptose , Lesões Encefálicas , Eritrócitos/citologia , Hematoma/metabolismo , Humanos , Imunidade Inata , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fagocitose , Fenótipo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Solubilidade , Resultado do Tratamento , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
12.
Oncotarget ; 8(61): 103236-103260, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262558

RESUMO

Traumatic brain injury (TBI) induces a series of inflammatory processes that contribute to neuronal damage. The present study investigated the involvement of soluble epoxide hydrolase (sEH) in neuroinflammation and brain damage in mouse TBI and in microglial cultures. The effects of genetic deletion of sEH and treatment with an sEH inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), on brain damage and inflammatory responses were evaluated in mice subjected to controlled cortical impact. The anti-inflammatory mechanism of sEH inhibition/deletion was investigated in vitro. TBI-induced an increase in sEH protein level in the injured cortex from 1 h to 4 days and sEH was expressed in microglia. Genetic deletion of sEH significantly attenuated functional deficits and brain damage up to 28 days post-TBI. Deletion of sEH also reduced neuronal death, apoptosis, brain edema, and BBB permeability at 1 and 4 day(s). These changes were associated with markedly reduced microglial/macrophage activation, neutrophil infiltration, matrix metalloproteinase-9 activity, inflammatory mediator expression at 1 and 4 day(s), and epoxyeicosatrienoic acid (EET) degradation at 1 and 4 day(s). Administration of AUDA attenuated brain edema, apoptosis, inflammatory mediator upregulation and EET degradation at 4 days. In primary microglial cultures, AUDA attenuated both LPS- or IFN-γ-stimulated nitric oxide (NO) production and reduced LPS- or IFN-γ-induced p38 MAPK and NF-κB signaling. Deletion of sEH also reduced IFN-γ-induced NO production. Moreover, AUDA attenuated N2A neuronal death induced by BV2 microglial-conditioned media. Our results suggest that inhibition of sEH may be a potential therapy for TBI by modulating the cytotoxic functions of microglia.

13.
J Neuroinflammation ; 14(1): 230, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178914

RESUMO

BACKGROUND: Inflammatory responses significantly contribute to neuronal damage and poor functional outcomes following intracerebral hemorrhage (ICH). Soluble epoxide hydrolase (sEH) is known to induce neuroinflammatory responses via degradation of anti-inflammatory epoxyeicosatrienoic acids (EET), and sEH is upregulated in response to brain injury. The present study investigated the involvement of sEH in ICH-induced neuroinflammation, brain damage, and functional deficits using a mouse ICH model and microglial cultures. METHODS: ICH was induced by injecting collagenase in both wild-type (WT) C57BL/6 mice and sEH knockout (KO) mice. WT mice were injected intracerebroventricularly with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), a selective sEH inhibitor, 30 min before ICH. Expression of sEH in the hemorrhagic hemisphere was examined by immunofluorescence and Western blot analysis. The effects of genetic deletion or pharmacological inhibition of sEH by AUDA on neuroinflammatory responses, EET degradation, blood-brain barrier (BBB) permeability, histological damage, and functional deficits were evaluated. The anti-inflammatory mechanism of sEH inactivation was investigated in thrombin- or hemin-stimulated cultured microglia. RESULTS: ICH induced an increase in sEH protein levels in the hemorrhagic hemisphere from 3 h to 4 days. sEH was expressed in microglia/macrophages, astrocytes, neurons, and endothelial cells in the perihematomal region. Genetic deletion of sEH significantly attenuated microglia/macrophage activation and expression of inflammatory mediators and reduced EET degradation at 1 and 4 days post-ICH. Deletion of sEH also reduced BBB permeability, matrix metalloproteinase (MMP)-9 activity, neutrophil infiltration, and neuronal damage at 1 and 4 days. Likewise, administration of AUDA attenuated proinflammatory microglia/macrophage activation and EET degradation at 1 day post-ICH. These findings were associated with a reduction in functional deficits and brain damage for up to 28 days. AUDA also ameliorated neuronal death, BBB disruption, MMP-9 activity, and neutrophil infiltration at 1 day. However, neither gene deletion nor pharmacological inhibition of sEH altered the hemorrhage volume following ICH. In primary microglial cultures, genetic deletion or pharmacological inhibition of sEH by AUDA reduced thrombin- and hemin-induced microglial activation. Furthermore, AUDA reduced thrombin- and hemin-induced P38 MAPK and NF-κB activation in BV2 microglia cultures. Ultimately, AUDA attenuated N2A neuronal death that was induced by BV2 microglial conditioned media. CONCLUSIONS: Our results suggest that inhibition of sEH may provide a potential therapy for ICH by suppressing microglia/macrophage-mediated neuroinflammation.


Assuntos
Lesões Encefálicas/enzimologia , Hemorragia Cerebral/patologia , Epóxido Hidrolases/metabolismo , Inflamação/enzimologia , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/enzimologia , Inflamação/etiologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Neurobiol Dis ; 103: 54-69, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28365213

RESUMO

Microglia/macrophages (MMΦ) are highly plastic phagocytes that can promote both injury and repair in diseased brain through the distinct function of classically activated and alternatively activated subsets. The role of MMΦ polarization in intracerebral hemorrhage (ICH) is unknown. Herein, we comprehensively characterized MMΦ dynamics after ICH in mice and evaluated the relevance of MMΦ polarity to hematoma resolution. MMΦ accumulated within the hematoma territory until at least 14days after ICH induction. Microglia rapidly reacted to the hemorrhagic insult as early as 1-1.5h after ICH and specifically presented a "protective" alternatively activated phenotype. Substantial numbers of activated microglia and newly recruited monocytes also assumed an early alternatively activated phenotype, but the phenotype gradually shifted to a mixed spectrum over time. Ultimately, markers of MMΦ classic activation dominated at the chronic stage of ICH. We enhanced MMΦ alternative activation by administering intraperitoneal injections of rosiglitazone, and subsequently observed elevations in CD206 expression on brain-isolated CD11b+ cells and increases in IL-10 levels in serum and perihematomal tissue. Enhancement of MMΦ alternative activation correlated with hematoma volume reduction and improvement in neurologic deficits. Intraventricular injection of alternative activation signature cytokine IL-10 accelerated hematoma resolution, whereas microglial phagocytic ability was abolished by IL-10 receptor neutralization. Our results suggest that MMΦ respond dynamically to brain hemorrhage by exhibiting diverse phenotypic changes at different stages of ICH. Alternative activation-skewed MMΦ aid in hematoma resolution, and IL-10 signaling might contribute to regulation of MMΦ phagocytosis and hematoma clearance in ICH.


Assuntos
Hemorragia Cerebral/metabolismo , Hematoma/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Microglia/metabolismo , Animais , Hemorragia Cerebral/patologia , Hematoma/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Técnicas de Cultura de Órgãos , Distribuição Aleatória
15.
J Clin Invest ; 127(1): 280-292, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27893460

RESUMO

Intracerebral hemorrhage (ICH) is a devastating form of stroke that results from the rupture of a blood vessel in the brain, leading to a mass of blood within the brain parenchyma. The injury causes a rapid inflammatory reaction that includes activation of the tissue-resident microglia and recruitment of blood-derived macrophages and other leukocytes. In this work, we investigated the specific responses of microglia following ICH with the aim of identifying pathways that may aid in recovery after brain injury. We used longitudinal transcriptional profiling of microglia in a murine model to determine the phenotype of microglia during the acute and resolution phases of ICH in vivo and found increases in TGF-ß1 pathway activation during the resolution phase. We then confirmed that TGF-ß1 treatment modulated inflammatory profiles of microglia in vitro. Moreover, TGF-ß1 treatment following ICH decreased microglial Il6 gene expression in vivo and improved functional outcomes in the murine model. Finally, we observed that patients with early increases in plasma TGF-ß1 concentrations had better outcomes 90 days after ICH, confirming the role of TGF-ß1 in functional recovery from ICH. Taken together, our data show that TGF-ß1 modulates microglia-mediated neuroinflammation after ICH and promotes functional recovery, suggesting that TGF-ß1 may be a therapeutic target for acute brain injury.


Assuntos
Lesões Encefálicas/sangue , Hemorragia Cerebral/sangue , Microglia/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Fator de Crescimento Transformador beta1/sangue , Animais , Lesões Encefálicas/etiologia , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Regulação da Expressão Gênica , Interleucina-6/biossíntese , Interleucina-6/genética , Camundongos , Camundongos Transgênicos , Microglia/patologia , Fator de Crescimento Transformador beta1/genética
16.
Transl Stroke Res ; 6(5): 384-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25907620

RESUMO

For years, strategies have been proposed to improve translational success in stroke research by improving the quality of animal studies. However, articles that report preclinical intracerebral hemorrhage (ICH) studies continue to lack adequate qualitative and quantitative descriptions of fresh brain tissue collection. They also tend to lack transparency about animal model quality. We conducted a systematic review of 82 ICH research articles to determine the level of detail reported for brain tissue collection. We found that only 24 (29 %) reported the volume, weight, or thickness of tissue collected and a specific description of the anatomical location. Thus, up to 71 % of preclinical ICH research articles did not properly define how fresh specimens were collected for biochemical measurements. Such omissions may impede reproducibility of results between laboratories. Although existing criteria have improved the quality of preclinical stroke studies, ICH researchers need to identify specific guidelines and strategies to avoid pitfalls, minimize bias, and increase reproducibility in this field.


Assuntos
Encéfalo/fisiologia , Hemorragia Cerebral/fisiopatologia , Modelos Animais de Doenças , Projetos de Pesquisa , Pesquisa Translacional Biomédica/métodos , Animais , Humanos , Reprodutibilidade dos Testes
17.
Magn Reson Med ; 74(1): 42-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25879165

RESUMO

PURPOSE: To explore the capability of amide proton transfer (APT) imaging in the detection of hemorrhagic and ischemic strokes using preclinical rat models. METHODS: The rat intracerebral hemorrhage (ICH) model (n = 10) was induced by injecting bacterial collagenase VII-S into the caudate nucleus, and the permanent ischemic stroke model (n = 10) was induced by using a 4-0 nylon suture to occlude the origin of the middle cerebral artery. APT-weighted (APTw) MRI was acquired on a 4.7T animal imager and quantified using the magnetization transfer-ratio asymmetry at 3.5 ppm from water. RESULTS: There was a consistently high APTw MRI signal in hyperacute ICH during the initial 12 h after injection of collagenase compared with the contralateral brain tissue. When hemorrhagic and ischemic stroke were compared, hyperacute ICH and cerebral ischemia demonstrated opposite APTw MRI contrasts-namely, hyperintense versus hypointense compared with contralateral brain tissue, respectively. There was a stark contrast in APTw signal intensity between these two lesions. CONCLUSION: APT-MRI could accurately detect hyperacute ICH and distinctly differentiate hyperacute ICH from cerebral ischemia, thus opening up the possibility of introducing to the clinic a single MRI scan for the simultaneous visualization and separation of hemorrhagic and ischemic strokes at the hyperacute stage. Magn Reson Med 74:42-50, 2015. © 2014 Wiley Periodicals, Inc.

18.
Brain Behav Immun ; 46: 293-310, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25697396

RESUMO

Inflammatory mechanisms mediated by prostaglandins may contribute to the progression of intracerebral hemorrhage (ICH)-induced brain injury, but they are not fully understood. In this study, we examined the effect of prostaglandin E2 receptor EP1 (EP1R) activation and inhibition on brain injury in mouse models of ICH and investigated the underlying mechanism of action. ICH was induced by injecting collagenase, autologous blood, or thrombin into the striatum of middle-aged male and female mice and aged male mice. Effects of selective EP1R agonist ONO-DI-004, antagonist SC51089, and nonspecific Src family kinase inhibitor PP2 were evaluated by a combination of histologic, magnetic resonance imaging (MRI), immunofluorescence, molecular, cellular, and behavioral assessments. EP1R was expressed primarily in neurons and axons but not in astrocytes or microglia after ICH induced by collagenase. In middle-aged male mice subjected to collagenase-induced ICH, EP1R inhibition mitigated brain injury, brain edema, cell death, neuronal degeneration, neuroinflammation, and neurobehavioral deficits, whereas its activation exacerbated these outcomes. EP1R inhibition also was protective in middle-aged female mice and aged male mice after collagenase-induced ICH and in middle-aged male mice after blood- or thrombin-induced ICH. EP1R inhibition also reduced oxidative stress, white matter injury, and brain atrophy and improved functional outcomes. Histologic results were confirmed by MRI. Src kinase phosphorylation and matrix metalloproteinase-9 activity were increased by EP1R activation and decreased by EP1R inhibition. EP1R regulated matrix metalloproteinase-9 activity through Src kinase signaling, which mediated EP1R toxicity after collagenase-induced ICH. We conclude that prostaglandin E2 EP1R activation plays a toxic role after ICH through mechanisms that involve the Src kinases and the matrix metalloproteinase-9 signaling pathway. EP1R inhibition could be a novel therapeutic strategy to improve outcomes after ICH.


Assuntos
Encéfalo/patologia , Hemorragia Cerebral/patologia , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hemorragia Cerebral/metabolismo , Feminino , Hidrazinas/farmacologia , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Oxazepinas/farmacologia , Receptores de Prostaglandina E Subtipo EP1/agonistas , Receptores de Prostaglandina E Subtipo EP1/antagonistas & inibidores
19.
PLoS One ; 9(5): e97423, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24831292

RESUMO

Intracerebral hemorrhage (ICH) is a devastating condition. Existing preclinical ICH models focus largely on striatum but neglect other brain areas such as ventricle, cortex, and hippocampus. Clinically, however, hemorrhagic strokes do occur in these other brain regions. In this study, we established mouse hemorrhagic models that utilize stereotactic injections of autologous whole blood or collagenase to produce ventricular, cortical, and hippocampal injury. We validated and characterized these models by histology, immunohistochemistry, and neurobehavioral tests. In the intraventricular hemorrhage (IVH) model, C57BL/6 mice that received unilateral ventricular injections of whole blood demonstrated bilateral ventricular hematomas, ventricular enlargement, and brain edema in the ipsilateral cortex and basal ganglia at 72 h. Unilateral injections of collagenase (150 U/ml) caused reproducible hematomas and brain edema in the frontal cortex in the cortical ICH (c-ICH) model and in the hippocampus in the hippocampal ICH (h-ICH) model. Immunostaining revealed cellular inflammation and neuronal death in the periventricular regions in the IVH brain and in the perihematomal regions in the c-ICH and h-ICH brains. Locomotor abnormalities measured with a 24-point scoring system were present in all three models, especially on days 1, 3, and 7 post-ICH. Locomotor deficits measured by the wire-hanging test were present in models of IVH and c-ICH, but not h-ICH. Interestingly, mice in the c-ICH model demonstrated emotional abnormality, as measured by the tail suspension test and forced swim test, whereas h-ICH mice exhibited memory abnormality, as measured by the novel object recognition test. All three ICH models generated reproducible brain damage, brain edema, inflammation, and consistent locomotor deficits. Additionally, the c-ICH model produced emotional deficits and the h-ICH model produced cognitive deficits. These three models closely mimic human ICH and should be useful for investigating the pathophysiology of ICH in ventricle, cortex, and hippocampus and for evaluating potential therapeutic strategies.


Assuntos
Transfusão de Sangue Autóloga , Córtex Cerebral/patologia , Hemorragia Cerebral/patologia , Ventrículos Cerebrais/patologia , Colagenases/efeitos adversos , Hipocampo/patologia , Animais , Gânglios da Base/patologia , Comportamento Animal , Emoções , Inflamação , Injeções Intraventriculares , Locomoção , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo
20.
Ann Clin Transl Neurol ; 1(4): 258-271, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24741667

RESUMO

OBJECTIVE: In the wake of intracerebral hemorrhage (ICH), a devastating stroke with no effective treatment, hemoglobin/iron-induced oxidative injury leads to neuronal loss and poor neurologic outcomes. (-)-Epicatechin (EC), a brain-permeable flavanol that modulates redox/oxidative stress via the NF-E2-related factor (Nrf) 2 pathway, has been shown to be beneficial for vascular and cognitive function in humans. Here, we examined whether EC can reduce early brain injury in ICH mouse models and investigated the underlying mechanisms. METHODS: ICH was induced by injecting collagenase, autologous blood, or thrombin into mouse striatum. EC was administered orally at 3 h after ICH and then every 24 h. Lesion volume, neurologic deficits, brain edema, reactive oxygen species, and protein expression and activity were evaluated. RESULTS: EC significantly reduced lesion volume and ameliorated neurologic deficits in both male and female ICH mice. Cell death and neuronal degeneration were decreased in the perihematomal area and were associated with reductions in caspase-3 activity and HMGB-1 level. These changes were accompanied by attenuation of oxidative insults, increased phase II enzyme expression, and increased Nrf2 nuclear accumulation. Interestingly, in addition to providing neuroprotection via Nrf2 signaling, EC diminished heme oxygenase-1 induction and brain iron deposition via an Nrf2-independent pathway that downregulated ICH-induced activating protein-1 activation and decreased matrix metalloproteinase 9 activity, lipocalin-2 levels, iron-dependent cell death, and ferroptosis-related gene expression. INTERPRETATION: Collectively, our data show that EC protects against ICH by activation of Nrf2-dependent and -independent pathways and may serve as a potential intervention for patients with ICH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA