Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 7(8)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382591

RESUMO

The application of bacteriophages for biocontrol has attracted increasing attention. Here, we applied ϕBTCU-1 as a model phage to develop a method for controlling Mycobacterium tuberculosis (MTB) by using a bacteriophage-containing aerosol in a chamber study. The soil-isolated ϕBTCU-1 can infect both MTB and Mycobacterium smegmatis. Our study used M. smegmatis as an MTB surrogate for safety reasons. Among all the evaluated air samplers, the Andersen impactor was chosen to evaluate the bactericidal efficiency of ϕBTCU-1 against M. smegmatis since the recovery rates of the Andersen impactor were 1.5 to 10.6 times higher than those of sampling filters. When airborne ϕBTCU-1 with the highest concentration of 109 PFU/m3 challenged M. smegmatis (105 CFU/m3) for 10 s, no M. smegmatis colony was recovered from the culture medium. For surface decontamination, no colony of M. smegmatis, which started at 1000 CFU/plate (63.6 cm2), was recovered when exposed to higher ϕBTCU-1 concentrations (>109 PFU/m3) for 60 min. Bacteriophages may be useful for reducing MTB contamination in the air or on hard surfaces. The method we have established suggests that the biocontrol method may be an alternative approach or may be combined with other disinfection methods to prevent MTB infection.

2.
Artigo em Inglês | MEDLINE | ID: mdl-27294944

RESUMO

Contaminated surfaces play an important role in the transmission of pathogens. We sought to establish a criterion that could indicate "cleanliness" using a sampling area-adjusted adenosine triphosphate (ATP) assay. In the first phase of the study, target surfaces were selected for swab sampling before and after daily cleaning; then, an aerobic colony count (ACC) plate assay of bacteria and antibiotic-resistant bacteria was conducted. ATP swabs were also tested, and the ATP readings were reported as relative light units (RLUs). The results of the ACC and ATP assays were adjusted according to the sampling area. During the second phase of the study, a new cleaning process employing sodium dichloroisocyanurate (NaDCC) was implemented for comparison. Using the criterion of 2.5 colony-forming units (CFU)/cm², 45% of the sampled sites were successfully cleaned during phase one of the study. During phase two, the pass rates of the surface samples (64%) were significantly improved, except under stringent (5 RLU/cm²) and lax (500 RLU) ATP criteria. Using receiver-operating characteristic curve analysis, the best cut-off point for an area-adjusted ATP level was 7.34 RLU/cm², which corresponded to culture-assay levels of <2.5 CFU/cm². An area adjustment of the ATP assay improved the degree of correlation with the ACC-assay results from weak to moderate.


Assuntos
Trifosfato de Adenosina/análise , Bactérias/isolamento & purificação , Hospitais , Bioensaio , Contagem de Colônia Microbiana , Monitoramento Ambiental , Higiene , Controle de Infecções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA