Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 17(6): 5757-5772, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926834

RESUMO

Nanomedicines and macromolecular drugs can induce hypersensitivity reactions (HSRs) with symptoms ranging from flushing and breathing difficulties to hypothermia, hypotension, and death in the most severe cases. Because many normal individuals have pre-existing antibodies that bind to poly(ethylene glycol) (PEG), which is often present on the surface of nanomedicines and macromolecular drugs, we examined if and how anti-PEG antibodies induce HSRs to PEGylated liposomal doxorubicin (PLD). Anti-PEG IgG but not anti-PEG IgM induced symptoms of HSRs including hypothermia, altered lung function, and hypotension after PLD administration in C57BL/6 and nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Hypothermia was significantly reduced by blocking FcγRII/III, by depleting basophils, monocytes, neutrophils, or mast cells, and by inhibiting secretion of histamine and platelet-activating factor. Anti-PEG IgG also induced hypothermia in mice after administration of other PEGylated liposomes, nanoparticles, or proteins. Humanized anti-PEG IgG promoted binding of PEGylated nanoparticles to human immune cells and induced secretion of histamine from human basophils in the presence of PLD. Anti-PEG IgE could also induce hypersensitivity reactions in mice after administration of PLD. Our results demonstrate an important role for IgG antibodies in induction of HSRs to PEGylated nanomedicines through interaction with Fcγ receptors on innate immune cells and provide a deeper understanding of HSRs to PEGylated nanoparticles and macromolecular drugs that may facilitate development of safer nanomedicines.


Assuntos
Hipotermia , Polietilenoglicóis , Camundongos , Humanos , Animais , Polietilenoglicóis/química , Nanomedicina , Histamina , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Imunoglobulina G , Imunidade Inata , Lipossomos/farmacologia
2.
Gels ; 8(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35323293

RESUMO

Transarterial radioembolization (TARE) is an emerging treatment for patients with unresectable hepatocellular carcinoma (HCC). This study successfully developed radiometal-labeled chitosan microspheres (111In/177Lu-DTPA-CMS) with a diameter of 36.5 ± 5.3 µm for TARE. The radiochemical yields of 111In/177Lu-DTPA-CMS were greater than 90% with high radiochemical purities (>98%). Most of the 111In/177Lu-DTPA-CMS were retained in the hepatoma and liver at 1 h after intraarterial (i.a.) administration. Except for liver accumulation, radioactivity in each normal organ was less than 1% of the injected radioactivity (%IA) at 72 h after injection. At 10 days after injection of 177Lu-DTPA-CMS (18.6 ± 1.3 MBq), the size of the hepatoma was significantly reduced by around 81%, while that of the rats in the control group continued to grow. This study demonstrated the effectiveness of 177Lu-DTPA-CMS in the treatment of N1-S1 hepatoma. 111In/177Lu-DTPA-CMS have the potential to be a superior theranostic pair for the treatment of clinical hepatoma.

3.
J Mater Chem B ; 8(1): 65-77, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31768514

RESUMO

Gold nanostars (AuNSs), with unique physicochemical properties, are thought to be a promising agent for photothermal therapy (PTT). In this study, we prepared PEGylated gold nanostars (pAuNSs) using the HEPES-reduction method. The high photothermal conversion efficiency (∼80%) and photothermal stability of pAuNSs were demonstrated in vitro and in vivo. 111In-DTPA-pAuNSs were prepared as a radioactive surrogate for the biodistribution studies of pAuNSs. In both microSPECT/CT images and the biodistribution study, the tumor-to-muscle (T/M) ratio reached a maximum at 24 h post intravenous injection of 111In-DTPA-pAuNSs. The high linear correlation between the 111In radioactivity and the gold content in the tumors (R2 0.86-0.99) indicated that 111In-DTPA-pAuNSs were appropriate for noninvasively tracking pAuNSs in vivo after systemic administration. Histological examination after silver enhancement staining clearly illustrated that the accumulated pAuNSs in the tumors were mainly located on the luminal surface of vessels. The mice bearing a SKOV-3 xenograft exhibited remarkable therapeutic efficacy with negligible organ damage after receiving pAuNS-mediated photothermal therapy. Our findings suggested that pAuNSs, together with their radioactive surrogate 111In-DTPA-pAuNSs, are promising for applications in image-guided photothermal therapy.


Assuntos
Ouro/farmacocinética , Nanopartículas Metálicas/uso terapêutico , Neoplasias/terapia , Fototerapia/métodos , Polietilenoglicóis/farmacocinética , Nanomedicina Teranóstica/métodos , Animais , Linhagem Celular Tumoral , Feminino , Ouro/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos BALB C
4.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626093

RESUMO

Colorectal cancer is one of the major causes of cancer-related death in Taiwan and worldwide. Patients with peritoneal metastasis from colorectal cancer have reduced overall survival and poor prognosis. Hybrid protein-inorganic nanoparticle systems have displayed multifunctional applications in solid cancer theranostics. In this study, a gold nanocore-encapsulated human serum albumin nanoparticle (Au@HSANP), which is a hybrid protein-inorganic nanoparticle, and its radioactive surrogate 111In-labeled Au@HSANP (111In-Au@HSANP), were developed and their biological behaviors were investigated in a tumor/ascites mouse model. 111In-Au@HSANP was injected either intravenously (iv) or intraperitoneally (ip) in CT-26 tumor/ascites-bearing mice. After ip injection, a remarkable and sustained radioactivity retention in the abdomen was noticed, based on microSPECT images. After iv injection, however, most of the radioactivity was accumulated in the mononuclear phagocyte system. The results of biodistribution indicated that ip administration was significantly more effective in increasing intraperitoneal concentration and tumor accumulation than iv administration. The ratios of area under the curve (AUC) of the ascites and tumors in the ip-injected group to those in the iv-injected group was 93 and 20, respectively. This study demonstrated that the ip injection route would be a better approach than iv injections for applying gold-albumin nanoparticle in peritoneal metastasis treatment.


Assuntos
Ascite/patologia , Ouro/administração & dosagem , Nanopartículas/administração & dosagem , Albumina Sérica Humana/administração & dosagem , Administração Intravenosa , Animais , Área Sob a Curva , Sobrevivência Celular , Modelos Animais de Doenças , Difusão Dinâmica da Luz , Radioisótopos de Índio/química , Radioisótopos de Índio/farmacocinética , Injeções Intraperitoneais , Injeções Intravenosas , Camundongos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Albumina Sérica Humana/farmacocinética , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA