Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Phys Rev Lett ; 130(1): 016101, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36669218

RESUMO

We report the development of deep-learning coherent electron diffractive imaging at subangstrom resolution using convolutional neural networks (CNNs) trained with only simulated data. We experimentally demonstrate this method by applying the trained CNNs to recover the phase images from electron diffraction patterns of twisted hexagonal boron nitride, monolayer graphene, and a gold nanoparticle with comparable quality to those reconstructed by a conventional ptychographic algorithm. Fourier ring correlation between the CNN and ptychographic images indicates the achievement of a resolution in the range of 0.70 and 0.55 Å. We further develop CNNs to recover the probe function from the experimental data. The ability to replace iterative algorithms with CNNs and perform real-time atomic imaging from coherent diffraction patterns is expected to find applications in the physical and biological sciences.


Assuntos
Aprendizado Profundo , Nanopartículas Metálicas , Elétrons , Ouro , Redes Neurais de Computação , Algoritmos
3.
Nat Mater ; 21(1): 95-102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34663951

RESUMO

Liquids and solids are two fundamental states of matter. However, our understanding of their three-dimensional atomic structure is mostly based on physical models. Here we use atomic electron tomography to experimentally determine the three-dimensional atomic positions of monatomic amorphous solids, namely a Ta thin film and two Pd nanoparticles. We observe that pentagonal bipyramids are the most abundant atomic motifs in these amorphous materials. Instead of forming icosahedra, the majority of pentagonal bipyramids arrange into pentagonal bipyramid networks with medium-range order. Molecular dynamics simulations further reveal that pentagonal bipyramid networks are prevalent in monatomic metallic liquids, which rapidly grow in size and form more icosahedra during the quench from the liquid to the glass state. These results expand our understanding of the atomic structures of amorphous solids and will encourage future studies on amorphous-crystalline phase and glass transitions in non-crystalline materials with three-dimensional atomic resolution.

4.
Nature ; 592(7852): 60-64, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790443

RESUMO

Amorphous solids such as glass, plastics and amorphous thin films are ubiquitous in our daily life and have broad applications ranging from telecommunications to electronics and solar cells1-4. However, owing to the lack of long-range order, the three-dimensional (3D) atomic structure of amorphous solids has so far eluded direct experimental determination5-15. Here we develop an atomic electron tomography reconstruction method to experimentally determine the 3D atomic positions of an amorphous solid. Using a multi-component glass-forming alloy as proof of principle, we quantitatively characterize the short- and medium-range order of the 3D atomic arrangement. We observe that, although the 3D atomic packing of the short-range order is geometrically disordered, some short-range-order structures connect with each other to form crystal-like superclusters and give rise to medium-range order. We identify four types of crystal-like medium-range order-face-centred cubic, hexagonal close-packed, body-centred cubic and simple cubic-coexisting in the amorphous sample, showing translational but not orientational order. These observations provide direct experimental evidence to support the general framework of the efficient cluster packing model for metallic glasses10,12-14,16. We expect that this work will pave the way for the determination of the 3D structure of a wide range of amorphous solids, which could transform our fundamental understanding of non-crystalline materials and related phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA