Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 2): 252-259, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241123

RESUMO

In this study, a combination of X-ray excited optical luminescence (XEOL), time-resolved XEOL (TR-XEOL) and the Hanbury-Brown and Twiss (HB-T) interferometer at the Taiwan Photon Source (TPS) 23A X-ray nanoprobe beamline for exploring quantum materials is demonstrated. On the basis of the excellent spatial resolution rendered using a nano-focused beam, emission distributions of artificial micro-diamonds can be obtained by XEOL maps, and featured emission peaks of a selected local area can be obtained by XEOL spectra. The hybrid bunch mode of the TPS not only provides a sufficiently high peak power density for experiments at each beamline but also permits high-quality temporal domain (∼200 ns) measurements for investigating luminescence dynamics. From TR-XEOL measurements, the decay lifetime of micro-diamonds is determined to be approximately 16 ns. Furthermore, the XEOL spectra of artificial micro-diamonds can be investigated by the HB-T interferometer to identify properties of single-photon sources. The unprecedented strategy of combining XEOL, TR-XEOL and the HB-T interferometer at the X-ray nanoprobe beamline will open new avenues with significant characterization abilities for unraveling the emission mechanisms of single-photon sources for quantum materials.

2.
Micromachines (Basel) ; 15(1)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258224

RESUMO

In this study, the successful synthesis of bimetallic nickel/cobalt phosphide nanosheets (Ni-Co-P NSs) via the hydrothermal method and the subsequent high-temperature phosphorization process were both confirmed. Ni-Co-P NSs exhibited excellent electrocatalytic activity for the electrochemical non-enzymatic DA sensing. The surface morphologies and physicochemical properties of Ni-Co-P NSs were characterized by atomic force microscopy (AFM), field-emission scanning (FESEM), field-emission transmission electron microscopy (FETEM), and X-ray diffraction (XRD). Further, the electrochemical performance was evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The metallic nature of phosphide and the synergistic effect of Ni/Co atoms in Ni-Co-P NSs provided abundant catalytic active sites for the electrochemical redox reaction of DA, which exhibited a remarkable consequence with a wide linear range from 0.3~50 µM, a high sensitivity of 2.033 µA µM-1 cm-2, a low limit of detection of 0.016 µM, and anti-interference ability. As a result, the proposed Ni-Co-P NSs can be considered an ideal electrode material for the electrochemical non-enzymatic DA sensing.

3.
Chemosphere ; 340: 139834, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625493

RESUMO

The novel GdTaO4 phase exhibits good photocatalytic activity under visible light irradiation and holds great promise for the removal of organic dyes from industrial wastes. The GdTaO4 samples were synthesized using the hydrothermal and calcination process with different weight ratios of gadolinium nitrate hydrate (G) and tantalum pentachloride (T), and their structural studies confirmed the formation of the GdTaO4 (GT) phase. Among the samples, GT-4 (with a weight ratio of 4:1) exhibited the highest photocatalytic activity for the degradation of Methyl Orange (MO) dye under visible light irradiation. To enhance the photocatalytic performance, H2O2 was used as a green additive, and the photocatalytic abilities were examined by varying dye types and concentrations. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) revealed the local atomic and electronic structures around Ta and Gd and highlighted the contribution of Gd3+ to the GT system, which is a crucial factor in supporting the enhanced photocatalytic performance. Moreover, in-situ XAS at Gd M5-edge and O K-edge were examined under illumination/dark conditions to explore the electronic structures of photo-excited electron transition in the photocatalytic process. The analytical results provided strong evidence correlating the electronic structure and photocatalytic property of the GT. This study demonstrates that GdTaO4 exhibits good photocatalytic activity under visible light irradiation, making it a promising new Ta-based photocatalyst for the effective removal of organic dyes from industrial wastes.


Assuntos
Peróxido de Hidrogênio , Resíduos Industriais , Raios X , Luz , Corantes
4.
Front Chem ; 11: 1197961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426335

RESUMO

In this work, the novel CuTa2O6 phase was successfully synthesized by the hydrothermal and followed by the calcination process. The X-ray diffraction pattern confirms the formation of different phases. At a low temperature, CuTa2O6 exhibits the orthorhombic phase, whereas, at a higher temperature, it underwent a phase transition to a cubic crystal structure. X-ray photoelectron spectroscopic results suggest the presence of all the elements (Cu, Ta, and O). The optical studies were carried out using a UV-Vis DRS spectrophotometer. FESEM images confirm the spherical-shaped particles for the sample annealed at a high temperature. The local atomic and electronic structures around Cu and the contribution of the Cu oxidation state in the CuTa2O6 system were determined by X-ray absorption spectroscopy. To investigate the effective usage of CuTa2O6 in treating wastewater, its photocatalytic activity was investigated by evaluating its use in the photodegradation of MO dye under visible light irradiation. Moreover, the prepared CuTa2O6 photocatalyst exhibits significant photocatalytic activity in the degradation of MO dye and shows excellent stability; it is therefore a promising material for potential use in a practical photocatalyst. The CuTa2O6 photocatalyst suggests an alternative avenue of research into effective photo-catalysts for solar hydrogen water splitting.

5.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36560305

RESUMO

In this study, nanostructured gold was successfully prepared on a bare Au electrode using the electrochemical deposition method. Nanostructured gold provided more exposed active sites to facilitate the ion and electron transfer during the electrocatalytic reaction of organophosphorus pesticide (methyl parathion). The morphological and structural characterization of nanostructured gold was conducted using field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), which was further carried out to evaluate the electrocatalytic activity towards methyl parathion sensing. The electrochemical performance of nanostructured gold was investigated by electrochemical measurements (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)). The proposed nanostructured gold-modified electrode exhibited prominent electrochemical methyl parathion sensing performance (including two linear concentration ranges from 0.01 to 0.5 ppm (R2 = 0.993) and from 0.5 to 4 ppm (R2 = 0.996), limit of detection of 5.9 ppb, excellent selectivity and stability), and excellent capability in determination of pesticide residue in real fruit and vegetable samples (bok choy and strawberry). The study demonstrated that the presented approach to fabricate a nanostructured gold-modified electrode could be practically applied to detect pesticide residue in agricultural products via integrating the electrochemical and gas chromatography coupled with mass spectrometry (GC/MS-MS) analysis.


Assuntos
Nanopartículas Metálicas , Metil Paration , Nanocompostos , Resíduos de Praguicidas , Praguicidas , Metil Paration/análise , Praguicidas/análise , Compostos Organofosforados/análise , Ouro/química , Resíduos de Praguicidas/análise , Nanocompostos/química , Eletrodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas Metálicas/química
6.
IUCrJ ; 9(Pt 3): 355-363, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35546804

RESUMO

The effects of synthesis time on the plasmonic properties of Ag dendritic nanoforests on Si substrate (Ag-DNF/Si) samples synthesized through the fluoride-assisted galvanic replacement reaction were investigated. The Ag-DNF/Si samples were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, reflection spectroscopy, X-ray diffraction and surface-enhanced Raman spectroscopy (SERS). The prolonged reaction time led to the growth of an Ag-DNF layer and etched Si hole array. SEM images and variations in the fractal dimension index indicated that complex-structure, feather-like leaves became coral-like branches between 30 and 60 min of synthesis. The morphological variation during the growth of the Ag DNFs resulted in different optical responses to light illumination, especially those of light harvest and energy transformation. The sample achieved the most desirable light-to-heat conversion efficiency and SERS response with a 30 min growth time. A longer synthesis time or thicker Ag-DNF layer on the Si substrate did not have superior plasmonic properties.

7.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328716

RESUMO

Morphologically tunable copper oxide-based nanomaterials on Cu wire have been synthesized through a one-step alkali-assisted surface oxidation process for non-enzymatic glucose sensing. Subsequently, copper oxide-based nanomaterials on Cu wire as a supporting matrix to deposit manganese oxide for the construction of heterostructured Mn-Cu bimetallic oxide architectures through spontaneous redox reaction in the KMnO4 solution for supercapacitors. Field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) confirmed that morphological and phase transformation from Cu(OH)2 to CuO occurred in copper oxide-based nanomaterials on Cu wire with different degrees of growth reaction. In non-enzymatic glucose sensing, morphologically tunable copper oxide-based nanomaterials owned the high tunability of electrocatalytically active sites and intrinsic catalytic activity to meet efficient glucose electrooxidation for obtaining promoted non-enzymatic glucose sensing performances (sensitivity of 2331 µA mM-1 cm-2 and the limit of detection of 0.02 mM). In the supercapacitor, heterostructured Mn-Cu bimetallic oxide-based nanomaterials delivered abundant redox-active sites and continuous conductive network to optimize the synergistic effect of Mn and Cu redox species for boosting the pseudo-capacitance performance (areal capacitance value of 79.4 mF cm-2 at 0.2 mA cm-2 current density and capacitance retention of 74.9% after 1000 cycles). It concluded that morphologically tunable copper oxide-based nanomaterials on Cu wire with/without deposition of manganese oxide could be good candidates for the future design of synergistic multifunctional materials in electrochemical techniques.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Cobre/química , Eletrodos , Glucose/química , Compostos de Manganês , Óxidos
8.
Nanomaterials (Basel) ; 13(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615975

RESUMO

NiCoP nanosheets (NSs) were successfully synthesized using the hydrothermal and high-temperature phosphorization process. The obtained NiCoP NSs were immobilized on a glassy carbon electrode (GCE) and used to construct a novel sensing platform for electrochemical non-enzymatic H2O2 sensing. Physicochemical characteristics of NiCoP NSs were obtained by field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In addition, the electrochemical properties of NiCoP NSs were obtained by cyclic voltammetry (CV) and chronoamperometry (CA) towards the non-enzymatic detection of H2O2. FESEM and FETEM images provided a morphological insight (the unique nanosheets morphology of NiCoP) that could expose more active sites to promote mass/charge transport at the electrode/electrolyte interface. XRD and XPS results also confirmed the crystalline nature of the NiCoP nanosheets and the coexistence of multiple transitional metal oxidation states in NiCoP nanosheets. These unique physicochemical characteristics had a degree of contribution to ensuring enhancement in the electrochemical behavior. As a result, the synthesized NiCoP NSs composed of intercalated nanosheets, as well as the synergistic interaction between bimetallic Ni/Co and P atoms exhibited excellent electrocatalytical activity towards H2O2 electroreduction at neutral medium. As the results showed, the electrochemical sensing based on NiCoP NSs displayed a linear range of 0.05~4 mM, a sensitivity of 225.7 µA mM-1 cm-2, a limit of detection (LOD) of 1.190 µM, and good selectivity. It was concluded that NiCoP NSs-based electrochemical sensing might open new opportunities for future construction of H2O2 sensing platforms.

9.
Nanomaterials (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34835646

RESUMO

A simple, efficient, and cost-effective extended graphite as a supporting platform further supported the MnO2 growth for the construction of hierarchical flower-like MnO2/extended graphite. MnO2/extended graphite exhibited an increase in sp2 carbon bonds in comparison with that of extended graphite. It can be expected to display better electrical conductivity and further promote electron/ion transport kinetics for boosting the electrochemical performance in supercapacitors and glucose sensing. In supercapacitors, MnO2/extended graphite delivered an areal capacitance value of 20.4 mF cm-2 at 0.25 mA cm-2 current densities and great cycling stability (capacitance retention of 83% after 1000 cycles). In glucose sensing, MnO2/extended graphite exhibited a good linear relationship in glucose concentration up to about 5 mM, sensitivity of 43 µA mM-1cm-2, and the limit of detection of 0.081 mM. It is further concluded that MnO2/extended graphite could be a good candidate for the future design of synergistic multifunctional materials in electrochemical techniques.

10.
Nanomaterials (Basel) ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209414

RESUMO

The effects of Au cores in Ag shells in enhancing surface-enhanced Raman scattering (SERS) were evaluated with samples of various Au/Ag ratios. High-density Ag shell/Au core dendritic nanoforests (Au@Ag-DNFs) on silicon (Au@Ag-DNFs/Si) were synthesized using the fluoride-assisted Galvanic replacement reaction method. The synthesized Au@Ag-DNFs/Si samples were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, reflection spectroscopy, X-ray diffraction, and Raman spectroscopy. The ultraviolet-visible extinction spectrum exhibited increased extinction induced by the addition of Ag when creating the metal DNFs layer. The pure Ag DNFs exhibited high optical extinction of visible light, but low SERS response compared with Au@Ag DNFs. The Au core (with high refractive index real part) in Au@Ag DNFs maintained a long-leaf structure that focused the illumination light, resulting in the apparent SERS enhancement of the Ag coverage.

11.
Nanomaterials (Basel) ; 11(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199490

RESUMO

Nanocomposites of the binary transition metal sulfide Zn-Co-S/graphene (Zn-Co-S@G) were synthesized through a one-step hydrothermal method. They may be useful in the construction of an electrochemical immunosensor for carbohydrate antigen 19-9 (CA19-9) detection. Zn-Co-S dot-like nanoparticles uniformly covered the surface of graphene to form an interconnected conductive network, ensuring strong interaction between transition metal sulfide and graphene, which can expose numerous electroactive sites leading to the improvement of the amplified electrochemical signal toward a direct reduction of H2O2. Thus, the construction of an electrochemical immunosensor using Zn-Co-S@G nanocomposites showed outstanding sensing properties for detecting CA19-9. The constructed electrochemical immunosensor exhibited a good linear relationship in the range of 6.3 U·mL-1-300 U·mL-1, with the limit of detection at 0.82 U·mL-1, which makes it a promising candidate for an electrochemical immunosensor.

12.
Nanomaterials (Basel) ; 10(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198184

RESUMO

Silver dendritic nanoforests (Ag-DNFs) on silicon (Ag-DNFs/Si) were synthesized through the fluoride-assisted Galvanic replacement reaction (FAGRR) method. The synthesized Ag-DNFs/Si were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, inductively coupled plasma mass spectrometry (ICP-MS), reflection absorbance spectrometry, surface-enhanced Raman scattering spectrometry, and X-ray diffractometry. The Ag+ concentration in ICP-MS measurements indicated 1.033 mg/cm2 of deposited Ag synthesized for 200 min on Si substrate. The optical absorbance spectra indicated the induced surface plasmon resonance of Ag DNFs increased with the thickness of the Ag DNFs layer. Surface-enhanced Raman scattering measurement and a light-to-heat energy conversion test presented the superior plasmonic response of Ag-DNFs/Si for advanced applications. The Ag-DNFs/Si substrate exhibited high antibacterial activity against Escherichia coli and Staphylococcus aureus. The large surface area of the dense crystal Ag DNFs layer resulted in high antibacterial efficiency. The plasmonic response in the metal-crystal Ag DNFs under external light illumination can supply energy to enhance bacterial inhibition. High-efficiency plasmonic heating by the dense Ag DNFs can lead to localized bacterial inhibition. Thus, the Ag-DNFs/Si substrate has excellent potential for antibacterial applications.

13.
Sensors (Basel) ; 20(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759678

RESUMO

Zn-Co-S ball-in-ball hollow sphere (BHS) was successfully prepared by solvothermal sulfurization method. An efficient strategy to synthesize Zn-Co-S BHS consisted of multilevel structures by controlling the ionic exchange reaction was applied to obtain great performance electrode material. Carbon nanotubes (CNTs) as a conductive agent were uniformly introduced with Zn-Co-S BHS to form Zn-Co-S BHS/CNTs and expedited the considerable electrocatalytic behavior toward glucose electro-oxidation in alkaline medium. In this study, characterization with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) was used for investigating the morphological and physical/chemical properties and further evaluating the feasibility of Zn-Co-S BHS/CNTs in non-enzymatic glucose sensing. Electrochemical methods (cyclic voltammetry (CV) and chronoamperometry (CA)) were performed to investigate the glucose sensing performance of Zn-Co-S BHS/CNTs. The synergistic effect of Faradaic redox couple species of Zn-Co-S BHS and unique conductive network of CNTs exhibited excellent electrochemical catalytic ability towards the glucose electro-oxidation, which revealed linear range from 5 to 100 µM with high sensitivity of 2734.4 µA mM-1 cm-2, excellent detection limit of 2.98 µM, and great selectivity in the presence of dopamine, uric acid, ascorbic acid, and fructose. Thus, Zn-Co-S BHS/CNTs would be expected to be a promising material for non-enzymatic glucose sensing.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Glucose/análise , Nanotubos de Carbono , Eletrodos , Zinco
14.
Nanotechnology ; 29(6): 064002, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29176050

RESUMO

The photoelectrochemical (PEC) water splitting activity of Nb and Ta-doped hematite (α-Fe2O3) nanorods was investigated with reference to electronic structures by in situ synchrotron x-ray absorption spectroscopy (XAS). Current density-potential measurements demonstrate that the PEC activity of α-Fe2O3 nanorods depends strongly on the species and concentrations of dopants. The doping of α-Fe2O3 nanorods with a low level of Nb or Ta can improve their electrical conductivity and thereby facilitate charge transport and reduced electron-hole recombination therein. The photoconversion effects of Nb and Ta-doped α-Fe2O3 by in situ XAS in the dark and under illumination revealed opposite evolutions of the spectral intensities of the Fe L-edge and Nb/Ta L-edge, indicating that charge transfer and a conduction pathway are involved in the photoconversion. Analytic in situ XAS results reveal that the α-Fe2O3 that is doped with a low level of Nb has a greater photoconversion efficiency than that doped with Ta because Nb sites are more active than Ta sites in α-Fe2O3. The correlation between PEC activity and the electronic structure of Nb/Ta-doped α-Fe2O3 is examined in detail using in situ XAS and helps to elucidate the mechanism of PEC water splitting in terms of the electronic structure.

15.
Phys Chem Chem Phys ; 19(22): 14224-14229, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28443870

RESUMO

Smart windows, which change color in response to external stimuli, are extensively studied owing to their potential technological applications in sensors and their ability to reduce the energy consumed by buildings. Most related studies focus on the optical properties of smart color switching films that can control the transmission of light and that of heat independently. This study examines the vanadium pentoxide thin film as a model system of a color switchable window. A gasochromic thin film of V2O5 is fabricated using sol-gel spin coating. In operando soft X-ray absorption spectroscopy (XAS) at the V L-edge is used to determine the evolutions of the electronic and atomic structures of V2O5 thin film under gasochromic color switching. Analysis of the V K-edge with respect to crystalline structural symmetry and valence requires many reference samples, whereas the V L-edge, which involves V 3d orbitals of various symmetries, can provide information about the atomic/electronic structures without many reference samples. A new gas reaction in situ cell was developed to collect the total-electron-yield XAS. The total-electron-yield signal can provide more accurate information about atomic and electronic structures than can the fluorescence-yield signal, which typically exerts a saturation effect. Analytical results reveal that the gasochromic reaction changes the charge state and causes a local atomic structural deformation of the film. The suggestion has been made that in the reaction, the central vanadium atom within the octahedron moves closer to the basal plane such that the apical V-O bond becomes more symmetrical than the film before gasochromic coloration. Unlike the cell that is used for hard XAS, and for which only cation sites can be studied, this in situ gas cell enables the real-time studies of atomic/electronic structures at gas-solid interfaces from viewpoints of both cation and anion sites.

16.
Phys Chem Chem Phys ; 18(28): 18705-18, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27122222

RESUMO

Electrochemical and in situ X-ray absorption spectroscopy (XAS) measurements of various MnO2-coated carbon materials (MnO2/acid-functionalized carbon nanotubes (C-CNT), MnO2/reduced graphene oxide (RGO), and MnO2/RGO-Au electrodes) were conducted to evaluate the supercapacitive performances and electronic structures. MnO2 was deposited on the surface of C-CNT, RGO, and RGO-Au via a spontaneous redox reaction to facilitate the growth of the bulk form of MnO2/C-CNT and the surface forms of MnO2/RGO-based materials. Various forms of MnO2 on the carbon materials exhibited different charge/discharge behaviors. The specific capacitances of the MnO2/RGO and MnO2/RGO-Au electrodes at a current density of 1 A g(-1) were about 433 and 469 F g(-1), respectively; these values are about 1.5 times that of the MnO2/C-CNT (259 F g(-1)) electrode. Specific capacitances of 220 and 281 F g(-1) with retention rates of about 50-60% were obtained from MnO2/RGO and MnO2/RGO-Au, respectively, even at a high current density of 80 A g(-1). Experimental results revealed that the long-term electrochemical stability of the MnO2/RGO-based electrodes (with ∼90% retention) exceeded that of the MnO2/C-CNT electrode (with ∼60% retention) after 1000 cycles at a high scan rate of 80 A g(-1). This finding indicates that MnO2/RGO-based electrodes feature excellent cycling stability and rate capacity retention performance. To elucidate the atomic/electronic structures of the MnO2/C-CNT, MnO2/RGO, and MnO2/RGO-Au electrodes during the charge/discharge process, in situ XAS of the Mn K-edge was performed. The MnO2/RGO-based electrodes exhibited the least variations in the pre-peak intensity of the Mn K-edge during the charge/discharge process because a nano-network of MnO2 is homogeneously decorated on the outer surfaces of RGO-based electrodes to facilitate the growth of surface forms of MnO2/RGO and MnO2/RGO-Au. Analytical results further revealed suppression of changes in tunnel size and promotion of insertion/extraction behavior. This work, particularly the combination of cyclic voltammetry with in situ XAS measurements, will be of general value in the fields of nanomaterials and nanotechnology, and in their use in energy storage.

17.
Phys Chem Chem Phys ; 18(7): 5203-10, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26813863

RESUMO

In this work, gasochromic pristine and Mo-modified V2O5 thin films were prepared by the sol-gel spin coating method. Both films exhibit excellent gasochromic coloration. Synchrotron grazing incidence X-ray diffraction reveals that the Mo-modified V2O5 thin film is more amorphous than the pristine V2O5 thin film. X-ray absorption spectroscopy (XAS) was utilized to elucidate the modifications of the local electronic and atomic structures that are caused by Mo. In situ soft-XAS and in situ hard-XAS were performed to monitor the effect of the adsorption of dihydrogen on the charge state of vanadium and local atomic rearrangement in the gasochromic thin films. The gasochromic V2O5 film has a significantly pyramid-like oxygen-coordinated environment. However, the Mo-modified film exhibits mixed pyramid- and octahedral-like structures. Analytic results indicate that upon gasochromic coloration, adsorption of hydrogen adds electrons to the V 3d t2g orbital, lowering the charge state of vanadium. The films undergo structural modification before the valence is changed. The Mo-modified V2O5 film exhibits faster coloration because the apical V-O bond differs from that in the pristine V2O5 film. This in situ XAS allows real-time monitoring of changes in the element-specific local atomic structure during the gasochromic reaction and enables the elucidation of the gasochromic mechanism.

18.
Nanoscale ; 7(5): 1725-35, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25511126

RESUMO

The surfaces of acid- and amine-functionalized carbon nanotubes (C-CNT and N-CNT) were decorated with MnO2 nanoflakes as supercapacitors by a spontaneous redox reaction. C-CNT was found to have a lower edge plane structure and fewer defect sites than N-CNT. MnO2/C-CNT with a highly developed surface area exhibited favorable electrochemical performance. To determine the atomic/electronic structures of the MnO2/functionalized CNTs (MnO2/C-CNT and MnO/N-CNT) during the charge/discharge process, in situ X-ray absorption spectroscopy (XAS) measurements were made at the Mn K-edge. Both C-CNT and N-CNT are highly conductive. The effect of the scan rate on the capacitance behavior was also examined, revealing that the π* state of CNT and the size of the tunnels in pseudo-capacitor materials (which facilitate conduction and the transport of electrolyte ions) are critical for the capacitive performance, and their role depends on the scan rate. In the slow charge/discharge process, MnO2/N-CNT has a more symmetrical rectangular cyclic voltammetry (CV) curve. In the fast charge/discharge process, MnO2/C-CNT with a highly developed surface provides fast electronic and ionic channels that support a reversible faradaic redox reaction between MnO2 nanoflakes and the electrolyte, significantly enhancing its capacitive performance over that of MnO2/N-CNT. The MnO2/C-CNT architecture has great potential for supercapacitor applications. The information that was obtained herein helps to elucidate CNT surface modification and the design of the MnO2/functionalized CNT interface with a view for the further development of supercapacitors. This work, and especially the combination of CV with in situ XAS measurements, will be of value to readers with an interest in nanomaterial, nanotechnology and their applications in energy storage.

19.
Int J Nanomedicine ; 7: 1865-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22605935

RESUMO

One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA). This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 µm × 80 µm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks.


Assuntos
Técnicas de Cultura de Células/instrumentação , Ácido Láctico/química , Lasers , Ácido Poliglicólico/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Bovinos , Adesão Celular , Proliferação de Células , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Desenho de Equipamento , Microtecnologia/métodos , Microvasos , Modelos Cardiovasculares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
20.
Chem Commun (Camb) ; 47(22): 6458-60, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21552628

RESUMO

This communication demonstrates that the SiC coated glassy carbon electrode resolved the overlapping voltammetric responses of ascorbic acid (AA), dopamine (DA), and uric acid (UA), which could be used for selective determination of DA in the presence of AA and UA.


Assuntos
Ácido Ascórbico/química , Compostos Inorgânicos de Carbono/química , Dopamina/análise , Técnicas Eletroquímicas/métodos , Compostos de Silício/química , Ácido Úrico/química , Carbono/química , Catálise , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA