Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Microbiol Spectr ; : e0020024, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687071

RESUMO

RNA-Sequencing (RNA-Seq) and transcriptomic analyses have become powerful tools to study the developmental stages of fungal structures scuh as sclerotia. While RNA-Seq experiments have been set up for many important sclerotia- and microsclerotia-forming fungi, it has not been implemented to study Athelia rolfsii, which is one of the earliest fungi used in literature to uncover the roles of reactive oxygen species (ROS) in stimulating sclerotia formation. This study applied RNA-Seq to profile gene expression in four developmental stages of A. rolfsii sclerotia. Surprisingly, gene ontology and expression patterns suggested that most ROS-scavenging genes were not up-regulated in the stages from hyphal differentiation to the initial sclerotia stage. Using antioxidant and oxidant-amended culture assay, the results suggested none of the ascorbic acid, dithiothreitol (DTT), H2O2, or superoxide dismutase inhibitors [diethyldithiocarbamate (DETC), NaN3, and sodium dodecyl sulfate] affected the sclerotia number. Instead, only glutathione reduced the sclerotia number. Because glutathione has also been suggested to facilitate Ca2+ influx, therefore, glutathione culture assays with the combination of CaCl2, Ca2+-chelator egtazic acid, DETC, and H2O2 were tested on A. rolfsii, as well as two other fungi (Sclerotinia sclerotiorum and Macrophomina phaseolina) for comparison. Although the addition of CaCl2 caused sclerotia or microsclerotia reduction for all three fungi, the CaCl2-ROS interaction was only observed for S. sclerotiorum and M. phaseolina, but not A. rolfsi. Collectively, this study not only pointed out a conserved function of Ca2+ in suppressing fungal sclerotia and microsclerotia formation but also highlighted sclerotia formation of A. rolfsii being only sensitive to Ca2+ and independent of ROS stimuli.IMPORTANCEManagement for plant diseases caused by soil-borne fungal pathogens is challenging because many soil-borne fungal pathogens form sclerotia for long-term survival. Advanced understanding of the molecular and cellular mechanisms of sclerotia formation may provide novel insights to prevent these fungal residues in fields. This study discovered that Ca2+ acts as a negative signal cue to suppress sclerotia and microsclerotia formation in three economically important fungal pathogens. Moreover, the southern blight fungus Athelia rolfsii appears to be only regulated by Ca2+ but not reactive oxygen species. Accordingly, A. rolfsii can be a useful system for studying the detailed mechanism of Ca2+, and the applicability of Ca2+ in reducing sclerotia could be further assessed for disease management.

2.
Front Plant Sci ; 15: 1352997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495366

RESUMO

Plants are associated with a large diversity of microbes, and these complex plant-associated microbial communities are critical for plant health. Welsh onion (Allium fistulosum L.) is one of the key and oldest vegetable crops cultivated in Taiwan. The leaf of the Welsh onion is one of the famous spices in Taiwanese cuisine, thus, it is crucial to control foliar diseases. In recent years, Welsh onion cultivation in Taiwan has been severely threatened by the occurrence of leaf blight disease, greatly affecting their yield and quality. However, the overall picture of microbiota associated with the Welsh onion plant is still not clear as most of the recent etiological investigations were heavily based on the isolation of microorganisms from diseased plants. Therefore, studying the diversity of fungal communities associated with the leaf blight symptoms of Welsh onion may provide information regarding key taxa possibly involved in the disease. Therefore, this investigation was mainly designed to understand the major fungal communities associated with leaf blight to identify key taxa potentially involved in the disease and further evaluate any shifts in both phyllosphere and rhizosphere mycobiome assembly due to foliar pathogen infection by amplicon sequencing targeting the Internal Transcribed Spacer (ITS) 1 region of the rRNA. The alpha and beta-diversity analyses were used to compare the fungal communities and significant fungal groups were recognized based on linear discriminant analyses. Based on the results of relative abundance data and co-occurrence networks in symptomatic plants we revealed that the leaf blight of Welsh onion in Sanxing, is a disease complex mainly involving Stemphylium and Colletotrichum taxa. In addition, genera such as Aspergillus, Athelia and Colletotrichum were abundantly found associated with the symptomatic rhizosphere. Alpha-diversity in some fields indicated a significant increase in species richness in the symptomatic phyllosphere compared to the asymptomatic phyllosphere. These results will broaden our knowledge of pathogens of Welsh onion associated with leaf blight symptoms and will assist in developing effective disease management strategies to control the progress of the disease.

3.
J Agric Food Chem ; 72(8): 4237-4245, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38374637

RESUMO

Sclerotinia sclerotiorum is the causal agent of sclerotinia stem rot in over 400 plant species. In a previous study, the group III histidine kinase gene of S. sclerotiorum (Shk1) revealed its involvement in iprodione and fludioxonil sensitivity and osmotic stress. To further investigate the fungicide sensitivity associated with the high-osmolarity glycerol (HOG) pathway, we functionally characterized SsHog1, which is the downstream kinase of Shk1. To generate knockout mutants, split marker transformation combined with a newly developed repeated protoplasting method and CRISPR/Cas9 ribonucleoprotein (RNP) delivery approach were used. The pure SsHog1 and Shk1 knockout mutants showed reduced sensitivity to fungicides and increased sensitivity to osmotic stress. In addition, the SsHog1 knockout mutants demonstrated reduced virulence compared to Shk1 knockout mutants and wild-type. Our results indicate that the repeated protoplasting method and RNP approach can generate genetically pure homokaryotic mutants and SsHog1 is involved in osmotic adaptation, fungicide sensitivity, and virulence in S. sclerotiorum.


Assuntos
Ascomicetos , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Histidina Quinase/genética , Ascomicetos/metabolismo
4.
Front Plant Sci ; 15: 1341181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405589

RESUMO

Rhizobacteria are capable of inducing defense responses via the expression of pathogenesis-related proteins (PR-proteins) such as chitinases, and many studies have validated the functions of plant chitinases in defense responses. Soybean (Glycine max) is an economically important crop worldwide, but the functional validation of soybean chitinase in defense responses remains limited. In this study, genome-wide characterization of soybean chitinases was conducted, and the defense contribution of three chitinases (GmChi01, GmChi02, or GmChi16) was validated in Arabidopsis transgenic lines against the soil-borne pathogen Fusarium oxysporum. Compared to the Arabidopsis Col-0 and empty vector controls, the transgenic lines with GmChi02 or GmChi16 exhibited fewer chlorosis symptoms and wilting. While GmChi02 and GmChi16 enhanced defense to F. oxysporum, GmChi02 was the only one significantly induced by Burkholderia ambifaria. The observation indicated that plant chitinases may be induced by different rhizobacteria for defense responses. The survey of 37 soybean chitinase gene expressions in response to six rhizobacteria observed diverse inducibility, where only 10 genes were significantly upregulated by at least one rhizobacterium and 9 genes did not respond to any of the rhizobacteria. Motif analysis on soybean promoters further identified not only consensus but also rhizobacterium-specific transcription factor-binding sites for the inducible chitinase genes. Collectively, these results confirmed the involvement of GmChi02 and GmChi16 in defense enhancement and highlighted the diverse inducibility of 37 soybean chitinases encountering F. oxysporum and six rhizobacteria.

5.
BMC Plant Biol ; 24(1): 155, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424508

RESUMO

BACKGROUND: Powdery mildew (PM) is one of the important soybean diseases, and host resistance could practically contribute to soybean PM management. To date, only the Rmd locus on chromosome (Chr) 16 was identified through traditional QTL mapping and GWAS, and it remains unclear if the bulk segregant RNA-Seq (BSR-Seq) methodology is feasible to explore additional PM resistance that might exist in other varieties. RESULTS: BSR-Seq was applied to contrast genotypes and gene expressions between the resistant bulk (R bulk) and the susceptible bulk (S bulk), as well as the parents. The ∆(SNP-index) and G' value identified several QTL and significant SNPs/Indels on Chr06, Chr15, and Chr16. Differentially expressed genes (DEGs) located within these QTL were identified using HISAT2 and Kallisto, and allele-specific primers (AS-primers) were designed to validate the accuracy of phenotypic prediction. While the AS-primers on Chr06 or Chr15 cannot distinguish the resistant and susceptible phenotypes, AS-primers on Chr16 exhibited 82% accuracy prediction with an additive effect, similar to the SSR marker Satt431. CONCLUSIONS: Evaluation of additional AS-primers in the linkage disequilibrium (LD) block on Chr16 further confirmed the resistant locus, derived from the resistant parental variety 'Kaohsiung 11' ('KS11'), not only overlaps with the Rmd locus with unique up-regulated LRR genes (Glyma.16G213700 and Glyma.16G215100), but also harbors a down-regulated MLO gene (Glyma.16G145600). Accordingly, this study exemplified the feasibility of BSR-Seq in studying biotrophic disease resistance in soybean, and showed the genetic makeup of soybean variety 'KS11' comprising the Rmd locus and one MLO gene.


Assuntos
Resistência à Doença , Glycine max , Glycine max/genética , RNA-Seq , Alelos , Mapeamento Cromossômico/métodos , Fenótipo , Resistência à Doença/genética , Erysiphe , Doenças das Plantas/genética
6.
Plant Dis ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990523

RESUMO

From September 2020 to January 2021, an unknown disease of winged bean (Psophocarpus tetragonolobus) was reported by local growers in the Toucheng Town, Yilan County (N24.91, E121.85). The disease occurs in all age of winged bean, and the occurrence tended to be higher in humid environment, such as branches in lower canopy or branches in high density. The disease symptoms, which also appeared to be the sign of the pathogen, were spherical pustules in yellow to orange color on the stems, leaves, and pods of winged bean. Severely infected plants also exhibited growth reduction, malformation, and curling of the leaves and pods. According to the disease literature of winged bean, this unknown disease was likely to be the false rust caused by a chytrid pathogen, Synchytrium psophocarpi (UK, CAB International. 1993); and the uredinia-liked pustules could be the sori, which contain numerous ovoid to globose sporangia inside. In order to characterize the pathogen identity, the sori were manually ruptured to assess the size of individual sporangium, which had an average of 26.71 ± 4.25 µm x 26.61 ± 4.60 µm (n=42), similar to the size reported in literature (Drinkall and Price. 1979). To confirm the molecular identity, the full genomic sequences from the small subunit (SSU) to the internal transcribed spacer-1 (ITS-1), 5.8S unit, and ITS-2 were amplified using the primer sets NS3 and ITS4. The 2,263 bp amplicon was cloned and sequenced to reveal the identity (Smith et al. 2014). The BLASTN results matched the SSU of our isolate (MW649126.1) to the Synchytrium minutum (HQ324138.1) with 96% similarity (1,075 out of 1,121 bp in length), Synchytrium decipiens isolate DAOM_87618 (KF160868.1) with 92% similarity (1,215 out of 1,326 bp in length) and S. decipiens isolate AFTOL-ID 634 (DQ536475.1) with 92% similarity (1210 out of 1316 bp in length). Phylogenetic analysis using the SSU sequence revealed this unknown pathogen was the grouped within the clade of Synchytrium genus with 100% bootstrapping confidence (Smith et al. 2014). Accordingly, the pathogen was confirmed to be a Synchytrium chytrid fungus. To complete the Koch's postulates, the sori were collected from infected tissue. After vortexing washing in 1% bleach for surface sterilization, the sori were gently crashed by a plastic tube pestle to harvest sporangia. The sporangia were sprayed onto healthy winged beans cultivated in pots, and the inoculated plants were kept in a moisture bag in 25 °C. While leaf curling and malformation could be observed about 14 days post inoculation, the yellow to orange sori could be observed around 30 to 40 days post inoculation on the whole plants cultivated in pots. The sori were collected to confirm the sporangia and the sequences were identical to the original pathogen. Collectively, this study not only presents the first report for the false rust of winged bean in Taiwan, but also documents the first reference sequence of S. psophocarpi that will be useful for future molecular diagnosis. Since S. psophocarpi has been only reported in tropic regions including Indonesia, Malay Peninsula, Malaysia, Papua New Guinea, and Philippines, this report provides the first observation of S. psophocarpi moving in the subtropic region.

7.
Front Genet ; 14: 1103969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351341

RESUMO

Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited. This study conducted genome sequencing for 95 M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.

8.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867092

RESUMO

Sclerotia are specialized fungal structures formed by pigmented and aggregated hyphae, which can survive under unfavourable environmental conditions and serve as the primary inocula for several phytopathogenic fungi including Rhizoctonia solani. Among 154 R. solani anastomosis group 7 (AG-7) isolates collected in fields, the sclerotia-forming capability regarding sclerotia number and sclerotia size varied in the fungal population, but the genetic makeup of these phenotypes remained unclear. As limited studies have focused on the genomics of R. solani AG-7 and the population genetics of sclerotia formation, this study completed the whole genome sequencing and gene prediction of R. solani AG-7 using the Oxford NanoPore and Illumina RNA sequencing. Meanwhile, a high-throughput image-based method was established to quantify the sclerotia-forming capability, and the phenotypic correlation between sclerotia number and sclerotia size was low. A genome-wide association study identified three and five significant SNPs associated with sclerotia number and size in distinct genomic regions, respectively. Of these significant SNPs, two and four showed significant differences in the phenotypic mean separation for sclerotia number and sclerotia size, respectively. Gene ontology enrichment analysis focusing on the linkage disequilibrium blocks of significant SNPs identified more categories related to oxidative stress for sclerotia number, and more categories related to cell development, signalling and metabolism for sclerotia size. These results indicated that different genetic mechanisms may underlie these two phenotypes. Moreover, the heritability of sclerotia number and sclerotia size were estimated for the first time to be 0.92 and 0.31, respectively. This study provides new insights into the heritability and gene functions related to the development of sclerotia number and sclerotia size, which could provide additional knowledge to reduce fungal residues in fields and achieve sustainable disease management.


Assuntos
Estudo de Associação Genômica Ampla , Fenótipo , Sequenciamento Completo do Genoma , Anastomose Cirúrgica
9.
PLoS One ; 18(3): e0282809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888572

RESUMO

Modern agricultural practices rely on synthetic fungicides to control plant disease, but the application of these fungicides has raised concerns regarding human and environmental health for many years. As a substitute, environmentally friendly fungicides have been increasingly introduced as alternatives to synthetic fungicides. However, the impact of these environmentally friendly fungicides on plant microbiomes has received limited attention. In this study, we used amplicon sequencing to compare the bacterial and fungal microbiomes in the leaves of powdery mildew-infected cucumber after the application of two environmentally friendly fungicides (neutralized phosphorous acid (NPA) and sulfur) and one synthetic fungicide (tebuconazole). The phyllosphere α-diversity of both the bacterial and fungal microbiomes showed no significant differences among the three fungicides. For phyllosphere ß-diversity, the bacterial composition exhibited no significant differences among the three fungicides, but fungal composition was altered by the synthetic fungicide tebuconazole. While all three fungicides significantly reduced disease severity and the incidence of powdery mildew, NPA and sulfur had minimal impacts on the phyllosphere fungal microbiome relative to the untreated control. Tebuconazole altered the phyllosphere fungal microbiome by reducing the abundance of fungal OTUs such as Dothideomycetes and Sordariomycetes, which included potentially beneficial endophytic fungi. These results indicated that treatments with the environmentally friendly fungicides NPA and sulfur have fewer impacts on the phyllosphere fungal microbiome while maintaining the same control efficacy as the synthetic fungicide tebuconazole.


Assuntos
Ascomicetos , Cucumis sativus , Fungicidas Industriais , Microbiota , Humanos , Fungicidas Industriais/farmacologia , Bactérias
10.
Plant Dis ; 107(5): 1481-1490, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36302731

RESUMO

Red crown rot (RCR), caused by the soilborne fungus Calonectria ilicicola, is an emerging soybean disease in Taiwan, and fungicide screening is desired to identify effective management for C. ilicicola. This study screened 11 fungicides, including azoxystrobin, boscalid, cyprodinil, cyprodinil + fludioxonil, difenoconazole, fluopyram, flutolanil, mancozeb, prochloraz, pyraclostrobin, and tebuconazole, for their inhibitory effects on the mycelial growth of 10 C. ilicicola field isolates. Subsequently, a microplate-based high-throughput screening (MHTS) method was established to measure the fungicide sensitivity in a population composed of 80 C. ilicicola isolates to three effective fungicides, cyprodinil + fludioxonil, fluopyram, and tebuconazole. The MHTS was optimized for multiple factors, including the optical scanning pattern, absorption wavelength, conidial concentration, and measurement timing based on the quality controls of Z' factor and the log-phase growth curve. The population mean EC50 estimated by MHTS were 0.14, 2.34, and 2.46 ppm to cyprodinil + fludioxonil, fluopyram, and tebuconazole, respectively. In addition to the in vitro assessment, fungicide efficacy was evaluated by coating cyprodinil + fludioxonil, fluopyram, or tebuconazole on soybean seeds in the pot assay. The results showed that cyprodinil + fludioxonil significantly reduced both postemergence damping-off and disease severity, while fluopyram and tebuconazole reduced only the postemergence damping-off but not disease severity. Based on the MHTS and the pot assay results, this study demonstrated cyprodinil + fludioxonil to be a potential fungicide to manage soybean RCR.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Glycine max , Ensaios de Triagem em Larga Escala
12.
Microbiol Spectr ; 10(1): e0208421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080446

RESUMO

The infection of Macrophomina phaseolina often results in a grayish appearance with numerous survival structures, microsclerotia, on the plant surface. Past works have studied the development of fungal survival structures, sclerotia and microsclerotia, in the Leotiomycetes and Sordariomycetes. However, M. phaseolina belongs to the Dothideomycetes, and it remains unclear whether the mechanism of microsclerotia formation remains conserved among these phylogenetic clades. This study applied RNA-sequencing (RNA-Seq) to profile gene expressions at four stages of microsclerotia formation, and the results suggested that reactive oxygen species (ROS)-related functions were significantly different between the microsclerotia stages and the hyphal stage. Microsclerotia formation was reduced in the plates amended with antioxidants such as ascorbic acid, dithiothreitol (DTT), and glutathione. Surprisingly, DTT drastically scavenged H2O2, but the microsclerotia amount remained similar to the treatment of ascorbic acid and glutathione that both did not completely eliminate H2O2. This observation suggested the importance of [Formula: see text] over H2O2 in initiating microsclerotia formation. To further validate this hypothesis, the superoxide dismutase 1 (SOD1) inhibitor diethyldithiocarbamate trihydrate (DETC) and H2O2 were tested. The addition of DETC resulted in the accumulation of endogenous [Formula: see text] and more microsclerotia formation, but the treatment of H2O2 did not. The expression of SOD1 genes were also found to be upregulated in the hyphae to the microsclerotia stage, which suggested a higher endogenous [Formula: see text] stress presented in these stages. In summary, this study not only showed that the ROS stimulation remained conserved for initiating microsclerotia formation of M. phaseolina but also highlighted the importance of [Formula: see text] in initiating the hyphal differentiation to microsclerotia formation. IMPORTANCE Reactive oxygen species (ROS) have been proposed as the key stimulus for sclerotia development by studying fungal systems such as Sclerotinia sclerotiorum, and the theory has been adapted for microsclerotia development in Verticillium dahliae and Nomuraea rileyi. While many studies agreed on the association between (micro)sclerotia development and the ROS pathway, which ROS type, superoxide ([Formula: see text]) or hydrogen peroxide (H2O2), plays a major role in initiating hyphal differentiation to the (micro)sclerotia formation remains controversial, and literature supporting either [Formula: see text] or H2O2 can be found. This study confirmed the association between ROS and microsclerotia formation for the charcoal rot fungus Macrophomina phaseolina. Moreover, the accumulation of [Formula: see text] but not H2O2 was found to induce higher density of microsclerotia. By integrating transcriptomic and phenotypic assays, this study presented the first conclusive case for M. phaseolina that [Formula: see text] is the main ROS stimulus in determining the amount of microsclerotia formation.


Assuntos
Ascomicetos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Hifas/efeitos dos fármacos , Superóxidos/farmacologia , Ascomicetos/genética , Ascomicetos/metabolismo , Expressão Gênica , Glutationa , Peróxido de Hidrogênio , Hifas/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio
13.
Pest Manag Sci ; 78(2): 530-540, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34561937

RESUMO

BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) have been widely used to manage plant diseases caused by phytopathogenic fungi. Although attention to and use of SDHI fungicides has recently increased, molecular responses of fungal pathogens to SDHIs have often not been investigated. A SDHI fungicide, fluopyram, has been used as a soybean seed treatment and has displayed effective control of Fusarium virguliforme, one of the causal agents of soybean sudden death syndrome. To examine genome-wide gene expression of F. virguliforme to fluopyram, RNA-seq analysis was conducted on two field strains of F. virguliforme with differing SDHI fungicide sensitivity in the absence and presence of fluopyram. RESULTS: The analysis indicated that several xenobiotic detoxification-related genes, such as those of deoxygenase, transferases and transporters, were highly induced by fluopyram. Among the genes, four ATP-binding cassette (ABC) transporters were characterized by the yeast expression system. The results revealed that expression of three ABCG transporters was associated with reduced sensitivity to multiple fungicides including fluopyram. In addition, heterologous expression of a major facilitator superfamily (MFS) transporter that was highly expressed in the fluopyram-insensitive F. virguliforme strain in the yeast system conferred decreased sensitivity to fluopyram. CONCLUSION: This study demonstrated that xenobiotic detoxification-related genes were highly upregulated in response to fluopyram, and expression of ABC or MFS transporter genes was associated with reduced sensitivity to the SDHI fungicide. This is the first transcriptomic analysis of the fungal species response to fluopyram and the finding will help elucidate the molecular mechanisms of SDHI resistance. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Fusarium , Doenças das Plantas , Benzamidas/farmacologia , Fungicidas Industriais/farmacologia , Fusarium/genética , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Piridinas/farmacologia , Glycine max/microbiologia , Succinato Desidrogenase/antagonistas & inibidores , Ácido Succínico
14.
Plant Dis ; 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372682

RESUMO

From August to November 2020, reduced emergence and damping-off of soybean seedlings were observed in two fields (Benzhou and Wandan) in Taiwan. Disease incidence was approximately 40% in Benzhou by field scouting. The roots of damping-off seedlings were brown. Affected seedlings could be easily pulled out from the soil and the lesions on the roots/stem were generally dry and sunken. These symptoms suggested the possibility of Rhizoctonia infection. Soil surrounding symptomatic seedlings were collected to bait the potential pathogen and symptomatic plants were used for pathogen isolation. The diseased tissues were washed with tap water and surface-disinfected with 1% bleach before placing on the Dexon selection medium at 26°C for 2 days (Ko and Hora 1971). Hyphae were transferred to potato dextrose agar (PDA), and a brown colony with brown and irregular-shaped sclerotia grew from 90 out of 99 isolates. The hyphae exhibited typical characteristics of Rhizoctonia solani, including a constriction and a septum near the end of branching hyphae (Ajayi-Oyetunde and Bradely, 2018). Two isolates from Benzhou and two isolates from Wandan were tested for their pathogenicity, and eight surface-disinfected seeds were distributed evenly on the water agar plates covered by 2-day-old mycelia at 25°C in dark for 7 days. All isolates caused cotyledon rot and reduced germination. To verify their pathogenicity in pots, double-sterilized sorghum seeds were inoculated with two strains and incubated at 25°C for 2 weeks to be used as fungal inoculum (Ajayi-Oyetunde and Bradely, 2017). A layer of 15 ml of fungal inoculum was placed 5 cm beneath the soil surface in pots. Four soybean seeds were planted approximately 3 cm above the inoculum in each pot. After two weeks, reddish lesions on the hypocotyls or taproots of all seedlings in the inoculated pots were observed, while seedlings in the control pots inoculated with sterile sorghum seeds remained healthy. The pathogen was re-isolated from lesions and had identical morphology to the original isolates. To characterize the fungal identity, the internal transcribed spacer (ITS) was sequenced using the primers ITS1/ITS4 (Sharon et al., 2006). Using BLASTN in the NCBI database, the sequence (GenBank no. MW410857 and MW410858) showed 100% (639/639 bp) similarity to KF907734 and 99.83% (635/636 bp) similarity to AF354099, both belong to R. solani anastomosis group 7 (AG-7) (Hua et al. 2014; Gonzalez et al. 2001). Phylogenetic analysis comparing sequences with different AGs (Ajayi-Oyetunde and Bradely, 2017) grouped our isolates within the AG-7 clade with a 100% bootstrap confidence. In the anastomosis test, an incompatible zonation and unequal mycelial growth rates were observed when AG-7 isolates were paired with an AG-1 IA isolate. On the other hand, the compatible tuft reaction was observed when two AG-7 isolates were paired, and the compatible merge reaction was observed in the self-pairing tests (Macnish et al. 1997). Accordingly, the molecular and morphological characterizations confirmed the causal pathogen as R. solani AG-7. R. solani AG-7 was first reported on radishes in Japan (Homma et al., 1983), first found on carnation in Taiwan (Lo et al., 1990), and in field soils of various crops but not soybean (Chuang, 1997). It was suggested that Rhizoctonia diseases of soybean may be present in Taiwan, but molecular confirmation was lacking (Anonymus, 1979). As R. solani AG-7 causes diseases of soybean in the US and Japan (Baird et al., 1996), the importance of AG-7 as an endemic pathogen of soybean in Taiwan should be recognized and its prevalence determined as a first step to managing this disease.

15.
Plant Dis ; 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33970039

RESUMO

Soybean (Glycine max [L.] Merr.) is an important crop in Taiwan. In October 2020, an unknown leaf spot disease was counted (n = 100) to occur over 70% of soybean cultivar 'Hualien No.1' in the Shoufeng Township of Hualien County, eastern Taiwan. Initial symptoms on leaves as tiny lesions approximately 3 mm in diameter, which later enlarged and developed into round, irregular, and reddish-brown spots with concentric rings surrounded by a yellowish halo. The symptoms appeared on both young and old leaves, but rarely on the stem or pods. The lesions at the margin of healthy and infected tissues were surface-disinfested in 1% NaOCl for 30 seconds, washed twice in sterilized distilled water, dissected and plated on potato dextrose agar (PDA) to isolate the potential pathogen. Colonies on PDA exhibited light to dark brown color at 24°C with 12-hours light after 7-days incubation. The average growth rate was 3 mm per day. Conidia were light brown in color and obclavate to cylindrical in shape. The size of a conidium was measured with an average of 110.8 ± 28.2 µm in length and 15.2 ± 2.8 µm in width, typically with 3 to 18 septa (n = 50). To confirm the pathogenicity of this fungus, conidial suspension (104 conidia/mL) of two isolates, HL_GM-6 and HL_GM-7, were sprayed on the healthy leaves of 4-weeks-old soybean. Plants sprayed with sterile distilled water were used as a control. After inoculation, the plants were covered with plastic bags to maintain a high humidity for 24 hours before moving into a greenhouse with a condition of 20 to 25°C and relative humidity of 75 to 80%. After 7 days of inoculation, foliar symptoms began to appear and which were identical with the field observations. To complete the Koch's postulates, pathogen isolation was attempted and the identical fungus was retrieved from the foliar spots of the inoculated leaves. The foliar symptoms as well as the morphology of the conidiophores and conidia suggested the pathogen to be Corynespora cassiicola (Ellis et al. 1971). Molecular characterization was performed using the sequences of internal transcribed spacer (ITS) region of rDNA, actin (act1), tubulin, and translation elongation factor 1 alpha (tef1) genes after a PCR with ITS1/ITS4 (White et al. 1990), ACT-512F/ACT-783R (Carbone and Kohn, 1999), BT2a/Bt2b (Udayanga et al. 2012), EF1-728F/EF1-986R (Udayanga et al. 2012), respectively. BLASTN sequence analyses of the ITS, act1, tubulin, and tef1 genomic regions of the isolate HL_GM-7 (GenBanK accessions MW548097 MW961420, MW961419 and MW961421) showed high similarity with the isolates of C. cassiicola including 99.58% with sequence KF810854 (Deon et al. 2014), 99.11% with FJ853005 (Dixon et al. 2009), 99.34% with MH763700 (Duan et al. 2019), and 99.33% with KY112719 (Zhang et al. 2018) respectively. Based on the morphology, pathogenicity, and sequence results, this study becomes the first report of C. cassiicola causing target spot on soybean in Taiwan. C. cassiicola is known to infect a broad host range (Dixon et al. 2009; Lopezet al. 2018), and it has been found to infect tomato, cucumber, papaya, and Salvia miltiorrhiza in Taiwan (Lu et al. 2019; Tsai et al. 2015). Therefore, the emergence of soybean target spot should be aware to avoid potential damage to soybean production in Taiwan.

16.
Plant J ; 106(6): 1588-1604, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33788336

RESUMO

The rhizosphere is a multitrophic environment, and for soilborne pathogens such as Fusarium oxysporum, microbial competition in the rhizosphere is inevitable before reaching and infecting roots. This study established a tritrophic interaction among the plant growth-promoting rhizobacterium Burkholderia ambifaria, F. oxysporum and Glycine max (soybean) to study the effects of F. oxysporum genes on shaping the soybean microbiota. Although B. ambifaria inhibited mycelial growth and increased bacterial propagation in the presence of F. oxysporum, F. oxysporum still managed to infect soybean in the presence of B. ambifaria. RNA-Seq identified a putative F. oxysporum secretory ß-lactamase-coding gene, FOXG_18438 (abbreviated as Fo18438), that is upregulated during soybean infection in the presence of B. ambifaria. The ∆Fo18438 mutants displayed reduced mycelial growth towards B. ambifaria, and the complementation of full Fo18438 and the Fo18438 ß-lactamase domain restored mycelial growth. Using the F. oxysporum wild type, ∆Fo18438 mutants and complemented strains with full Fo18438, Fo18438 ß-lactamase domain or Fo18438 RTA1-like domain for soil inoculation, 16S rRNA amplicon sequencing revealed that the abundance of a Burkholderia operational taxonomic unit (OTU) was increased in the rhizosphere microbiota infested by the strains with Fo18438 ß-lactamase domain. Non-metric multidimensional scaling and PICRUSt2 functional analysis revealed differential abundance for the bacterial ß-lactam-related functions when contrasting the genotypes of F. oxysporum. These results indicated that the Fo18438 ß-lactamase domain provides F. oxysporum with the advantage of growing into the soybean rhizosphere, where ß-lactam antibiosis is involved in microbial competition. Accordingly, this study highlights the capability of an F. oxysporum gene for altering the soybean rhizosphere and taproot microbiota.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Glycine max/fisiologia , Microbiota/efeitos dos fármacos , Rizosfera , beta-Lactamases/metabolismo , Burkholderia/efeitos dos fármacos , Burkholderia/fisiologia , Proteínas Fúngicas/genética , Fusarium/genética , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Teste de Complementação Genética , Microbiologia do Solo , beta-Lactamases/genética
17.
Plant Dis ; 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779251

RESUMO

Starting from the May to August 2020 (average humidity 76.6% and temperature 25.2°C in Taipei), Boston ivy (Parthenocissus tricuspidata) plants on the campus of National Taiwan University (25°01'05.4"N 121°32'36.6"E) exhibited leaf rusts caused by Phakopsora ampelopsidis (Tzean et al., 2019) and leaf spots caused by an unknown pathogen. The leaf spots appeared reddish to brown color and mostly irregular to round shape on the simple and trifoliate leaflets (Supplemental Figure 1A-C). The leaf spots were surface-disinfected with 1% NaOCl for 30 seconds, and the margin of healthy and infected tissues was cut and placed onto water agar, which were incubated at room temperature. Hyphae grown out from leaf spots were sub-cultured on potato dextrose agar (PDA), and the majority of isolates exhibited white colony with black pycnidial conidiomata embedded in PDA. The pycnidial conidiomata of two-week-old has an average diameter of 463±193 µm (n=30) and the sizes of α-conidia were 5.71±0.49 µm in length and 2.42±0.32 µm in width (n=50) similar to the previous records (Crous et al. 2015). The α-conidium was one-celled, hyaline, and ovoid with two droplets (Supplemental Figure 1D-G). This putative pathogen was re-inoculated to confirm its pathogenicity on the leaves of Boston ivy plants. A PDA block with actively growing fungal edge was placed on the tiny needle-wounded leaves of detached branches (Supplemental Figure H-I) and the whole plants in pots (Supplemental Figure 1J-M) in a moist chamber at 28°C in dark. Reddish to brown leaf spots were observed by 2 days post-inoculation (dpi) and the leaf spots expanded by 5 dpi. To complete the Koch's postulates, the pathogen was re-isolated from inoculated leaves and the re-isolated pathogen exhibited identical morphology to the original isolate. The internal transcribed spacer (ITS), translational elongation factor subunit 1-α gene (EF1α), ß-tubulin (BT), and calmodulin (CAL) was amplified using the primers ITS1/ITS4 (Martin and Rygiewicz. 2005), EF1-728F/EF1-986R, Bt2a/Bt2b, and CAL-228F/CAL-737R, respectively (Manawasinghe et al. 2019). Using BLAST in the NCBI database, the ITS (MT974186), EF1α (MT982963), and ß-tubulin (MT982962) sequences showed 98.57% (NR_147574.1, 553 out of 561 bp), 98.04% (KR936133.1, 350 out of 357 bp), and 99.23% (KR936132.1, 518 out of 522 bp) identity to the Diaporthe tulliensis ex-type BRIP 62248a, respectively (Dissanayake et al. 2017). Phylogenetic analysis using concatenated sequences of ITS, EF1α, and ß-tubulin grouped the D. tulliensis isolated from Boston ivy leaf spots with the D. tulliensis ex-type (Supplemental Figure 1N). In summary, the morphological and molecular characterizations supported the causal pathogen of Boston ivy leaf spot as D. tulliensis. While Diaporthe ampelopsidis was reported to infect Parthenocissus quinquefolia and P. tricuspidata (Anonymous, 1960; Wehmeyer, 1933), there is no record for D. tulliensis infecting Boston ivy according to the USDA National Fungus Collections (Farr and Rossman. 2020). Because pathogens of Boston ivy such as P. ampelopsidis may also infect close-related crops like grape (Vitis vinifera L.) and D. tulliensis has been known to infect kiwifruits (Actinidia chinensis) and cocoa (Theobroma cacao) (Bai et al. 2016; Yang et al. 2018), the emergence of D. tulliensis should be aware to avoid potential damage to economic crops.

18.
Mol Plant Microbe Interact ; 34(7): 848-851, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33683143

RESUMO

Calonectria ilicicola (anamorph: Cylindrocladium parasiticum) is a soilborne plant-pathogenic fungus with a broad host range, and it can cause red crown rot of soybean and Cylindrocladium black rot of peanut, which has become an emerging threat to crop production worldwide. Limited molecular studies have focused on Calonectria ilicicola and one of the possible difficulties is the lack of genomic resources. This study presents the first high quality and near-completed genome of C. ilicicola, using the Oxford Nanopore GridION sequencing platform. A total of 16 contigs were assembled and the genome of C. ilicicola isolate F018 was estimated to have 11 chromosomes. Currently, the C. ilicicola F018 genome represents the most contiguous assembly, which has the lowest contig number and the highest contig N50 among all Calonectria genome resources. Putative protein-coding sequences and secretory proteins were estimated to be 17,308 and 1,930 in the C. ilicicola F018 genome, respectively; and the prediction was close to other plant-pathogenic fungi, such as Fusarium species, within the Nectriaceae family. The availability of this high-quality genome resource is expected to facilitate research on fungal biology and genetics of C. ilicicola and to support advanced understanding of pathogen virulence and disease management.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fusarium , Hypocreales , Doenças das Plantas , Glycine max
19.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33200960

RESUMO

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Assuntos
Fusarium , Fusarium/genética , Filogenia , Doenças das Plantas , Plantas
20.
Phytopathology ; 110(4): 907-915, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31821112

RESUMO

Sudden death syndrome (SDS) foliar symptoms consist of foliar chlorosis, foliar necrosis, leaf marginal curling, and premature defoliation, but resistance screening has been evaluated mostly based on the overall SDS foliar severity rather than on a specific foliar symptom. This study generated an F2 population derived from crossing the susceptible variety Sloan and the resistant germplasm line PI 243518, which exhibits resistance to both foliar chlorosis and necrosis. A total of 400 F2 lines were evaluated for foliar chlorosis, foliar necrosis, and overall SDS foliar symptoms, separately. Genotyping-by-sequencing was applied to obtain single nucleotide polymorphisms (SNPs) in the F2 population, and linkage mapping using 135 F2 lines with 969 high-quality SNPs identified a locus on chromosome 13 for foliar necrosis and SDS foliar symptoms. The locus partially overlaps with loci previously reported for SDS on chromosome 13, which is the third time the region from 15.98 to 21.00 Mbp has been reproduced independently and therefore qualifies this locus for a new nomenclature proposed as Rfv13-02. In summary, this study generated a new biparental population that enables not only the discovery of a locus for foliar necrosis and SDS foliar symptoms on chromosome 13 but also the potential for advanced exploration of SDS foliar resistance derived from the germplasm line PI 243518.


Assuntos
Fusarium , Glycine max , Mapeamento Cromossômico , Morte Súbita , Resistência à Doença , Humanos , Doenças das Plantas , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA