RESUMO
Background: Immune checkpoint inhibitors (ICIs) are effective for non-small cell lung cancer (NSCLC) treatment, but the response rate remains low. Programmed cell death ligand 1 (PD-L1) in peripheral blood, including soluble form (sPD-L1), expression on circulating tumor cells (CTCs PD-L1) and exosomes (exoPD-L1), are minimally invasive and promising markers for patient selection and management, but their prognostic significance remains inconclusive. Here, we performed a meta-analysis for the prognostic value of PD-L1 blood markers in NSCLC patients treated with ICIs. Methods: Eligible studies were obtained by searching PubMed, EMBAS, Web of Science, and Cochrane Library prior to November 30, 2023. The associations between pre-treatment, post-treatment and dynamic changes of blood PD-L1 levels and progression-free survival (PFS)/over survival (OS) were analyzed by estimating hazard ratio (HR) and 95% confidence interval (CI). Results: A total of 26 studies comprising 1606 patients were included. High pre- or post-treatment sPD-L1 levels were significantly associated with worse PFS (pre-treatment: HR=1.49, 95%CI 1.13-1.95; post-treatment: HR=2.09, 95%CI 1.40-3.12) and OS (pre-treatment: HR=1.83, 95%CI 1.25-2.67; post-treatment: HR=2.60, 95%CI 1.09-6.20, P=0.032). High pre-treatment exoPD-L1 levels predicted a worse PFS (HR=4.24, 95%CI 2.82-6.38, P<0.001). Pre-treatment PD-L1+ CTCs tended to be correlated with prolonged PFS (HR=0.63, 95%CI 0.39-1.02) and OS (HR=0.58, 95%CI 0.36-0.93). Patients with up-regulated exoPD-L1 levels, but not sPD-L1, after ICIs treatment had significantly favorable PFS (HR=0.36, 95%CI 0.23-0.55) and OS (HR=0.24, 95%CI 0.08-0.68). Conclusion: PD-L1 blood markers, including sPD-L1, CTCs PD-L1 and exoPD-L1, can effectively predict prognosis, and may be potentially utilized for patient selection and treatment management for NSCLC patients receiving ICIs.
Assuntos
Antígeno B7-H1 , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/imunologia , Antígeno B7-H1/sangue , Biomarcadores Tumorais/sangue , PrognósticoRESUMO
Gastric cancer (GC) is a prominent global health issue, as it ranks as the fifth most prevalent type of cancer and the fourth most significant cause of cancer-related mortality worldwide. Although H. pylori is known to play a role in the development of GC, genetic factors also play a role in its onset and progression. Recent studies have shown that genetic polymorphisms are strongly associated with the development of GC and that certain single nucleotide polymorphisms (SNPs) can be used as biomarkers for early diagnosis and prevention. Epigenetic disturbances, such as DNA methylation, are involved in the development of GC, and mutations in the DNA methyltransferase (DNMT) gene have been found to increase the risk of GC. However, previous findings on the association between DNMTs SNPs and GC risk have been inconsistent. In this study, an updated meta-analysis of three well-studied and controversial DNMTs polymorphic loci, DNMT1 rs16999593, DNMT3A rs1550117 and DNMT3B rs1569686, was performed to provide more reliable results. It was found that DNMT1 rs16999593 was not associated with GC, DNMT3A rs1550117 may have a positive association with GC risk, and DNMT3B rs1569686 may be a protective factor for GC. These findings may provide valuable information for early diagnosis and prevention of GC, but further studies are needed to confirm these results.
Assuntos
Predisposição Genética para Doença , Neoplasias Gástricas , Humanos , Genótipo , DNA Metiltransferase 3A , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Polimorfismo de Nucleotídeo Único , Metilação de DNA , Neoplasias Gástricas/genética , Fatores de ProteçãoRESUMO
Colorectal cancer (CRC) is one of the most common solid tumors worldwide and has an extremely poor prognosis. MicroRNA-429 (miR-429) has been reported to participate in the progression of CRC. However, the pathological mechanisms require further investigation. The aim of the present study was to investigate the association between miR-429 and high mobility group box 3 (HMGB3) in CRC and the associated mechanism. The mRNA expression levels of miR-429 and HMGB3 in 65 paired CRC and adjacent tissues were examined by reverse transcription-quantitative PCR. Furthermore, a dual-luciferase reporter assay was performed to identify the association between miR-429 and HMGB3. Finally, the effects of miR-429 and HMGB3 on the proliferation and apoptosis of CRC cells were detected. As a result, it was identified that miR-429 expression was downregulated and HMGB3 expression was upregulated in CRC tissues compared with in adjacent non-cancer tissues, and the expression levels of miR-429 were negatively associated with those of HMGB3. Notably, HMGB3 was demonstrated to be a direct target of miR-429 by dual-luciferase reporter assay. Furthermore, transfection with a miR-429 mimic significantly inhibited HMGB3 expression and led to decreased proliferation and increased apoptosis of CRC cells. On the other hand, transient overexpression of HMGB3 partially inhibited the antitumor effects of miR-429. To the best of our knowledge, the present study demonstrated for the first time that miR-429 regulated the proliferation and apoptosis of CRC cells via HMGB3, suggesting a specific tumor suppressive function of the miR-429/HMGB3 signaling pathway in CRC.
RESUMO
BACKGROUND: Platinum-based chemotherapy plays an antitumor role by damaging DNA. X-ray repair crosscomplementing protein 1 (XRCC1) participates in DNA repair and thus affects the sensitivity to platinum drugs. Two polymorphisms of XRCC1, rs25487 (Arg399Gln) and rs1799782 (Arg194Trp), have been widely studied for the association with clinical outcomes of platinum-based chemotherapy in Asian patients with non-small-cell lung cancer (NSCLC), but the results remain inconclusive. Thus, we performed the present meta-analysis. METHODS: Literature search was performed in PubMed, Web of Science, and EMBASE up to June 2019. Odds ratios (ORs) for objective response ratio (ORR), Cox proportional hazard ratios (HRs) of overall survival (OS) and progression-free survival (PFS), and the corresponding 95% confidence intervals (95% CIs) were calculated to assess the association strengths between XRCC1 polymorphisms and clinical outcomes. Comparisons were performed in homozygous, heterozygous, dominant, and recessive models. RESULTS: Finally, a total of 23 studies involving 5567 patients were included in the meta-analysis. Compared to ArgArg of rs25487, GlnGln (OR = 1.71, 95% CI: 1.16-2.52, p = .007, I 2 = 56.8%) and GlnArg (OR = 1.23, 95% CI: 1.07-1.40, p = .003, I 2 = 29.0%) were associated with higher ORR. Meanwhile, GlnGln indicated a favorable OS (HR = 0.60, 95% CI: 0.40-0.88) and PFS (HR = 0.64, 95% CI: 0.46-0.90). We also found positive associations between rs1799782 and ORR in all comparison models with low between-study heterogeneity. The association strength increased with the number of variant alleles (TrpTrp vs. ArgArg: OR = 1.73, 95% CI:1.31-2.27; TrpArg vs. ArgArg: OR = 1.28, 95% CI: 1.06-1.55), suggesting a gene dosage effect. In addition, TrpTrp predicted a longer OS. CONCLUSION: Our results showed that rs25487 and rs1799782 of XRCC1 are potential markers to predict clinical outcomes of platinum-based chemotherapy in Asian patients with NSCLC.
Assuntos
Carboplatina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Cisplatino/uso terapêutico , Neoplasias Pulmonares/genética , Polimorfismo Genético , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Antineoplásicos/uso terapêutico , Povo Asiático , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/etnologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Expressão Gênica , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/etnologia , Neoplasias Pulmonares/mortalidade , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismoRESUMO
BACKGROUND: Stathmin as a critical protein involved in microtubule polymerization, is necessary for survival of cancer cells. However, extremely little is known about Stathmin in glioblastoma. So, this study was designed to elucidate the function of Stathmin gene in the tumorigenesis and progression of glioblastoma cells. METHOD: The lentiviral interference vector pLV3-si-Stathmin targeting Stathmin gene and the control vector pLV3-NC were established for the co-transfection of 293T cells together with the helper plasmids. Viral titer was determined via limiting dilution assay. Then pLV3-si-Stathmin and pLV3-NC were stably co-transfected into U373 and U87-MG glioblastoma cells. Expression levels of Stathmin protein in each group were determined by using Western Blot, and the proliferation and migration ability of the cells with downregulated Stathmin were evaluated through CCK8 assay and transwell invasion assay, respectively. Cell cycles and cell apoptosis were detected with flow cytometry. Finally, the effect of Stathmin in tumor formation was determined in nude mice. RESULT: DNA sequencing and viral titer assay indicated that the lentiviral interference vector was successfully established with a viral titer of 4 × 108 TU/ml. According to the results from Western Blotting, Stathmin protein expression level decreased significantly in the U373 and U87-MG cells after transfected with pLV3-si-Stathmin, respectively, compared with those transfected with pLV3-NC. In glioblastoma cells, the cell proliferation and migration were greatly inhibited after the downregulation of Stathmin protein. Flow cytometry showed that much more cells were arrested in G2/M phasein Stathmin downregulated group, compared with the non-transfection group and NC group. But Stathmin downregulation did not induce significant cell apoptosis. Tumor formation assay in nude mice showed that tumor formation was delayed after Stathmin downregulation, with a reduction in both tumor formation rate and tumor growth velocity. CONCLUSION: Stathmin downregulation affected the biological behaviors of U373 and U87-MG glioblastoma cells, inhibiting the proliferation and migration of tumor cells. Stathmin gene may serve as a potential target in gene therapy for glioblastoma.
Assuntos
Proliferação de Células/genética , Regulação para Baixo/genética , Glioblastoma/metabolismo , Estatmina/genética , Animais , Linhagem Celular Tumoral , Vetores Genéticos , Glioblastoma/genética , Glioblastoma/patologia , Camundongos , Estatmina/metabolismo , TransfecçãoRESUMO
BACKGROUND: Stathmin as a critical protein involved in microtubule polymerization, is necessary for survival of cancer cells. However, extremely little is known about Stathmin in glioblastoma. So, this study was designed to elucidate the function of Stathmin gene in the tumorigenesis and progression of glioblastoma cells. METHOD: The lentiviral interference vector pLV3-si-Stathmin targeting Stathmin gene and the control vector pLV3-NC were established for the co-transfection of 293T cells together with the helper plasmids. Viral titer was determined via limiting dilution assay. Then pLV3-si-Stathmin and pLV3-NC were stably co-transfected into U373 and U87-MG glioblastoma cells. Expression levels of Stathmin protein in each group were determined by using Western Blot, and the proliferation and migration ability of the cells with downregulated Stathmin were evaluated through CCK8 assay and transwell invasion assay, respectively. Cell cycles and cell apoptosis were detected with flow cytometry. Finally, the effect of Stathmin in tumor formation was determined in nude mice. RESULT: DNA sequencing and viral titer assay indicated that the lentiviral interference vector was successfully established with a viral titer of 4 × 108 TU/ml. According to the results from Western Blotting, Stathmin protein expression level decreased significantly in the U373 and U87-MG cells after transfected with pLV3-si-Stathmin, respectively, compared with those transfected with pLV3-NC. In glioblastoma cells, the cell proliferation and migration were greatly inhibited after the downregulation of Stathmin protein. Flow cytometry showed that much more cells were arrested in G2/M phasein Stathmin downregulated group, compared with the non-transfection group and NC group. But Stathmin downregulation did not induce significant cell apoptosis. Tumor formation assay in nude mice showed that tumor formation was delayed after Stathmin downregulation, with a reduction in both tumor formation rate and tumor growth velocity. CONCLUSION: Stathmin downregulation affected the biological behaviors of U373 and U87-MG glioblastoma cells, inhibiting the proliferation and migration of tumor cells. Stathmin gene may serve as a potential target in gene therapy for glioblastoma.
Assuntos
Animais , Camundongos , Regulação para Baixo/genética , Glioblastoma/metabolismo , Proliferação de Células/genética , Estatmina/genética , Transfecção , Glioblastoma/genética , Glioblastoma/patologia , Linhagem Celular Tumoral , Estatmina/metabolismo , Vetores GenéticosRESUMO
OBJECTIVE: This study intended to explore the molecular mechanism of RUNX3 in inhibiting the process of migration and proliferation of gastric cancer (GC) cells. METHODS: The overexpressed plasmids of RUNX3 and the interfering siRNA of RUNX3 were transfected into GC cells. Then, qRT-PCR and western blot were performed to identify the expression level of RUNX3 and miR-182 in tumors and adjacent tissues respectively. ChIP and luciferase assay were performed to detect the relationship between RUNX3 and miR-182 as well as miR-182 and HOXA9. Furthermore, EdU assay were used to investigate the proliferation of GC cells, Transwell assay and wound healing assay were utilized to assess cell metastasis. Xenograft mouse model was set to evaluate the proliferation in vivo. RESULTS: The results of qRT-PCR and western blot indicated that RUNX3 could regulate the expression of miR-182. RUNX3 can be straightly interacted with the promoter region of miR-182 in accordance with the results of ChIP. Luciferase assay revealed that HOXA9 was the direct target gene of miR-182. In addition, EdU proliferation, wound healing assay and transwell assay showed that miR-182 mimics and HOXA9 siRNA could inhibit the ability of cells proliferation, migration and invasion. The findings of in vivo experiments strongly supported the view that miR-182/HOXA9 was involved in the process of RUNX3-mediated GC tumor growth. CONCLUSIONS: RUNX3 could impede the ability of GC cells proliferation, migration and invasion by modulating miR-182/HOXA9 pathway.
Assuntos
Proliferação de Células/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Invasividade Neoplásica/genética , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Regiões Promotoras Genéticas/genética , Neoplasias Gástricas/patologia , Cicatrização/genéticaRESUMO
BACKGROUND & AIMS: The secretory protein Slit2 and its receptor Robo1 are believed to regulate cell growth and migration. Here, we aimed to determine whether Slit2-Robo1 signaling mediates the pathogenesis of liver fibrosis. METHODS: Serum levels of Slit2 in patients with liver fibrosis were determined by ELISA. Liver fibrosis was induced in wild-type (WT), Slit2 transgenic (Slit2-Tg) and Robo1(+/-)Robo2(+/-) double heterozygotes (Robo1/2(+/-)) mice by carbon tetrachloride (CCl4). The functional contributions of Slit2-Robo1 signaling in liver fibrosis and activation of hepatic stellate cells (HSCs) were investigated using primary mouse HSCs and human HSC cell line LX-2. RESULTS: Significantly increased serum Slit2 levels and hepatic expression of Slit2 and Robo1 were observed in patients with liver fibrosis. Compared to WT mice, Slit2-Tg mice were much more vulnerable to CCl4-induced liver injury and more readily develop liver fibrosis. Development of hepatic fibrosis in Slit2-Tg mice was associated with a stronger hepatic expression of collagen I and α-smooth muscle actin (α-SMA). However, liver injury and hepatic expression of collagen I and α-SMA were attenuated in CCl4-treated Robo1/2(+/-) mice in response to CCl4 exposure. In vitro, Robo1 neutralizing antibody R5 and Robo1 siRNA downregulated phosphorylation of Smad2, Smad3, PI3K, and AKT in HSCs independent of TGF-ß1. R5 and Robo1 siRNA also inhibited the expression of α-SMA by HSCs. Finally, the protective effect of R5 on the CCl4-induced liver injury and fibrosis was further verified in mice. CONCLUSIONS: Slit2-Robo1 signaling promotes liver injury and fibrosis through activation of HSCs.
Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Estudos de Casos e Controles , Linhagem Celular , Células Cultivadas , Feminino , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Cirrose Hepática/patologia , Cirrose Hepática Experimental/etiologia , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Transdução de Sinais , Proteínas RoundaboutRESUMO
BACKGROUND: CD95 rs2234767 polymorphism in the promotor region of CD95 gene has been implicated in several studies of cervical cancer. However, the results have not been conclusively established. OBJECTIVE: The main aim of this study was to deal with the controversy with respect to the correlation between CD95 rs2234767 polymorphism and risk of cervical cancer through a meta-analysis. METHODS: Association studies that pertain to CD95 rs2234767 polymorphism and risk of cervical cancer were identified up to May 26, 2014. ORs and 95% CIs were calculated assuming AA versus GG, AA + AG versus GG, AA versus AG + GG, A versus G and AG versus GG genetic models. RESULTS: A total of 5 case-control studies were included in this meta-analysis. Overall, no significant effect modification of cervical cancer risk was revealed either at the genotypic or the allelic level for CD95 rs2234767 polymorphism. This null association persisted in the stratified analysis of Asian population. CONCLUSIONS: These findings revealed that CD95 rs2234767 polymorphism may not act as a causative agent of cervical cancer. Further evidence is needed to confirm our findings.
RESUMO
Cyclooxygenase-2 (Cox-2) is an inducible enzyme that converts arachidonic acid to prostaglandins, and it is hypothesized to induce carcinogenesis and metastasis in colorectal cancer. Our previous data also indicated that a higher expression level of Cox-2 was correlated with colorectal cancer metastasis. The Cox-2 protein was detected in the glandular cavity of colorectal cancer and the surrounding interstitial tissues. The usefulness of the Cox-2 gene as a gene therapy target and diagnostic marker remains unknown. In this study, a method using immuno-PCR and real-time PCR followed by supramolecular immunobead real-time PCR was established and used to detect the expression of Cox-2 in serum samples of nude mice with colorectal carcinoma. In addition, we established a Cox-2 gene stable knockdown colorectal cell line (SW480-EGFP-Cox-2 shRNA) using lentiviral vector-mediated RNA interference (RNAi) technology and established an imageable colorectal cancer metastasis mouse model. We found that the proliferation, invasion and tumorigenesis of SW480-EGFP-Cox-2 shRNA cells were attenuated compared with SW480 cells. In vivo experiments also demonstrated that angiogenesis in the Cox-2 knockdown colorectal cancer cells was decreased. The whole body optical imaging revealed that the SW480-EGFP-Cox-2 shRNA cells had an abrogated ability to develop metastases in the lymph nodes, lungs or liver in vivo. The improved immunobead PCR assay detected significantly lower Cox-2 protein levels in the serum samples of the SW480-EGFP-Cox-2 shRNA group compared with those of the SW480-EGFP-Cox-2-Ctrl shRNA group. In conclusion, our results indicated that the knockdown of Cox-2 expression suppressed the proliferation and invasion of colorectal cancer cells both in vitro and in vivo. This study also demonstrated that silencing Cox-2 in vivo reduced the metastastic potential of colorectal cancer. Thus, Cox-2 is a promising marker for the diagnosis of colorectal metastasis and a potential therapeutic target for colorectal cancer.
Assuntos
Biomarcadores Tumorais/sangue , Carcinoma/secundário , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/sangue , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Biomarcadores Tumorais/genética , Carcinoma/sangue , Carcinoma/enzimologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/sangue , Neoplasias Colorretais/enzimologia , Ciclo-Oxigenase 2/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imunoensaio , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Interferência de RNA , Imagem Corporal TotalRESUMO
OBJECTIVE: To investigate the acute toxicity and assess the median lethal dose (LD50) of matrine in Kunming mice. METHODS: Matrine at different doses were administered in Kunming mice via intraperitoneal injection, and the toxic reactions and LD50 of matrine was observed and determined. RESULTS: The acute toxicity test of matrine indicated that the tolerable dose of matrine was above 80 mg/kg in Kunming mice, and the LD50 was 157.13 mg/kg (95%CI, 88.08-280.31 mg/kg). Morphological observation revealed degenerative changes of the nerve cells in the brain tissue of the mice. CONCLUSION: The nervous system is the main target organ by the toxicity of matrine.