Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Ann Lab Med ; 44(4): 314-323, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38361427

RESUMO

The safety and efficacy of both cell and gene therapies have been demonstrated in numerous preclinical and clinical trials. Chimeric antigen receptor T (CAR-T) cell therapy, which leverages the technologies of both cell and gene therapies, has also shown great promise for treating various cancers. Advancements in pertinent fields have also highlighted challenges faced while manufacturing cell and gene therapy products. Potential problems and obstacles must be addressed to ease the clinical translation of individual therapies. Literature reviews of representative cell-based, gene-based, and cell-based gene therapies with regard to their general manufacturing processes, the challenges faced during manufacturing, and QC specifications are limited. We review the general manufacturing processes of cell and gene therapies, including those involving mesenchymal stem cells, viral vectors, and CAR-T cells. The complexities associated with the manufacturing processes and subsequent QC/validation processes may present challenges that could impede the clinical progression of the products. This article addresses these potential challenges. Further, we discuss the use of the manufacturing model and its impact on cell and gene therapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Imunoterapia Adotiva , Neoplasias/genética , Terapia Genética
2.
Int J Stem Cells ; 17(1): 80-90, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37822280

RESUMO

Cellular senescence causes cell cycle arrest and promotes permanent cessation of proliferation. Since the senescence of mesenchymal stem cells (MSCs) reduces proliferation and multipotency and increases immunogenicity, aged MSCs are not suitable for cell therapy. Therefore, it is important to inhibit cellular senescence in MSCs. It has recently been reported that metabolites can control aging diseases. Therefore, we aimed to identify novel metabolites that regulate the replicative senescence in MSCs. Using a fecal metabolites library, we identified nervonic acid (NA) as a candidate metabolite for replicative senescence regulation. In replicative senescent MSCs, NA reduced senescence-associated ß-galactosidase positive cells, the expression of senescence-related genes, as well as increased stemness and adipogenesis. Moreover, in non-senescent MSCs, NA treatment delayed senescence caused by sequential subculture and promoted proliferation. We confirmed, for the first time, that NA delayed and inhibited cellular senescence. Considering optimal concentration, duration, and timing of drug treatment, NA is a novel potential metabolite that can be used in the development of technologies that regulate cellular senescence.

3.
Brain ; 146(9): 3608-3615, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37143322

RESUMO

The duplication of the peripheral myelin protein 22 (PMP22) gene causes a demyelinating type of neuropathy, commonly known as Charcot-Marie-Tooth disease type 1A (CMT1A). Development of effective drugs for CMT1A still remains as an unmet medical need. In the present study, we assessed the role of the transforming growth factor beta 4 (TGFß4)/Nodal axis in the pathogenesis of CMT1A. First, we identified PMP22 overexpression-induced Nodal expression in Schwann cells, which might be one of the downstream effectors in CMT1A. Administration of Nodal protein at the developmental stage of peripheral nerves induced the demyelinating phenotype in vivo. Second, we further isolated TGFß4 as an antagonist that could abolish Nodal-induced demyelination. Finally, we developed a recombinant TGFß4-fragment crystallizable (Fc) fusion protein, CX201, and demonstrated that its application had promyelinating efficacy in Schwann cells. CX201 administration improved the demyelinating phenotypes of CMT1A mouse models at both pre-symptomatic and post-symptomatic stages. These results suggest that the TGFß4/Nodal axis plays a crucial role in the pathogenesis of CMT1A and might be a potential therapeutic target for CMT1A.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Camundongos , Doença de Charcot-Marie-Tooth/patologia , Proteínas da Mielina/metabolismo , Células de Schwann , Fenótipo , Fator de Crescimento Transformador beta/metabolismo
4.
Nano Lett ; 23(2): 476-490, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36638236

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease with multifactorial pathogenesis. However, most current therapeutic approaches for AD target a single pathophysiological mechanism, generally resulting in unsatisfactory therapeutic outcomes. Recently, mesenchymal stem cell (MSC) therapy, which targets multiple pathological mechanisms of AD, has been explored as a novel treatment. However, the low brain retention efficiency of administered MSCs limits their therapeutic efficacy. In addition, autologous MSCs from AD patients may have poor therapeutic abilities. Here, we overcome these limitations by developing iron oxide nanoparticle (IONP)-incorporated human Wharton's jelly-derived MSCs (MSC-IONPs). IONPs promote therapeutic molecule expression in MSCs. Following intracerebroventricular injection, MSC-IONPs showed a higher brain retention efficiency under magnetic guidance. This potentiates the therapeutic efficacy of MSCs in murine models of AD. Furthermore, human Wharton's jelly-derived allogeneic MSCs may exhibit higher therapeutic abilities than those of autologous MSCs in aged AD patients. This strategy may pave the way for developing MSC therapies for AD.


Assuntos
Doença de Alzheimer , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Geleia de Wharton , Humanos , Camundongos , Animais , Idoso , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Diferenciação Celular
5.
Biomedicines ; 10(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36009433

RESUMO

We have recently reported on how transplantation of human mesenchymal stem cells (MSCs) into the mouse parenchyma generated immune responses. To facilitate the clinical translation of MSC-based AD therapy, the safety and efficacy of human derived MSCs (hMSCs) must be confirmed in the pre-clinical stage. Thus, it is imperative to investigate measures to reduce immune responses exerted via xenotransplantation. In this study, immunosuppressants were co-administered to mice that had received injections of hMSCs into the parenchyma. Prior to performing experiments using transgenic AD mice (5xFAD), varying immunosuppressant regimens were tested in wild-type (WT) mice and the combination of dexamethasone and tofacitinib (DexaTofa) revealed to be effective in enhancing the persistence of hMSCs. According to transcriptome sequencing and immunohistochemical analyses, administration of DexaTofa reduced immune responses generated via transplantation of hMSCs in the parenchyma of 5xFAD mice. Significant mitigation of amyloid burden, however, was not noted following transplantation of hMSCs alone or hMSCs with DexaTofa. The efficacy of the immunosuppressant regimen should be tested in multiple AD mouse models to promote its successful application and use in AD stem cell therapy.

6.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012334

RESUMO

Myostatin is a member of the transforming growth factor-beta superfamily and is an endogenous negative regulator of muscle growth. This study aimed to determine whether an oral administration of Lactobacillus casei expressing modified human myostatin (BLS-M22) could elicit sufficient levels of myostatin-specific antibody and improve the dystrophic features of an animal model of Duchenne muscular dystrophy (DMD; mdx mouse). BLS-M22 is a recombinant L. casei engineered to harbor the pKV vector and poly-gamma-glutamic acid gene linked to a modified human myostatin gene. Serological analysis showed that anti-myostatin IgG titers were significantly increased, and serum creatine kinase was significantly reduced in the BLS-M22-treated mdx mice compared to the control mice. In addition, treatment of BLS-M22 resulted in a significant increase in body weight and motor function (Rotarod behavior test). Histological analysis showed an improvement in the dystrophic features (fibrosis and muscle hypertrophy) of the mdx mice with the administration of BLS-M22. The circulating antibodies generated after BLS-M22 oral administration successfully lowered serum myostatin concentration. Myostatin blockade resulted in serological, histological, and functional improvements in mdx mice. Overall, the findings suggest the potential of BLS-M22 to treat DMD; however, further clinical trials are essential to ascertain its efficacy and safety in humans.


Assuntos
Lacticaseibacillus casei , Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Administração Oral , Animais , Anticorpos/uso terapêutico , Modelos Animais de Doenças , Humanos , Lacticaseibacillus casei/genética , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/patologia
7.
Stem Cells Int ; 2022: 4711499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450345

RESUMO

Mesenchymal stem cells (MSCs) are effective therapeutic agents that contribute to tissue repair and regeneration by secreting various factors. However, donor-dependent variations in MSC proliferation and therapeutic potentials result in variable production yields and clinical outcomes, thereby impeding MSC-based therapies. Hence, selection of MSCs with high proliferation and therapeutic potentials would be important for effective clinical application of MSCs. This study is aimed at identifying the upregulated genes in human Wharton's jelly-derived MSCs (WJ-MSCs) with high proliferation potential using mRNA sequencing. Aurora kinase A (AURKA) and dedicator of cytokinesis 2 (DOCK2) were selected as the upregulated genes, and their effects on proliferation, migration, and colony formation of the WJ-MSCs were verified using small interfering RNA (siRNA) techniques. mRNA expression levels of both the genes were positively correlated with the proliferation capacity of WJ-MSCs. Moreover, AURKA from human WJ-MSCs regulated the antiapoptotic effect of skeletal muscle cells by upregulating the chemokine (C motif) ligand (XCL1); this was further confirmed in the mdx mouse model. Taken together, the results indicated that AURKA and DOCK2 can be used as potential biomarkers for proliferation and migration of human WJ-MSCs. In particular, human WJ-MSCs with high expression of AURKA might have therapeutic efficacy against muscle diseases, such as Duchenne muscular dystrophy (DMD).

8.
Cell Death Differ ; 29(3): 540-555, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34556809

RESUMO

Developing methods to improve the regenerative capacity of somatic stem cells (SSCs) is a major challenge in regenerative medicine. Here, we propose the forced expression of LIN28A as a method to modulate cellular metabolism, which in turn enhances self-renewal, differentiation capacities, and engraftment after transplantation of various human SSCs. Mechanistically, in undifferentiated/proliferating SSCs, LIN28A induced metabolic reprogramming from oxidative phosphorylation (OxPhos) to glycolysis by activating PDK1-mediated glycolysis-TCA/OxPhos uncoupling. Mitochondria were also reprogrammed into healthy/fused mitochondria with improved functional capacity. The reprogramming allows SSCs to undergo cell proliferation more extensively with low levels of oxidative and mitochondrial stress. When the PDK1-mediated uncoupling was untethered upon differentiation, LIN28A-SSCs differentiated more efficiently with an increase of OxPhos by utilizing the reprogrammed mitochondria. This study provides mechanistic and practical approaches of utilizing LIN28A and metabolic reprogramming in order to improve SSCs utility in regenerative medicine.


Assuntos
Células-Tronco Adultas , Mitocôndrias , Células-Tronco Adultas/metabolismo , Diferenciação Celular , Reprogramação Celular , Glicólise , Humanos , Mitocôndrias/metabolismo , Fosforilação Oxidativa
9.
Alzheimers Res Ther ; 13(1): 154, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521461

RESUMO

BACKGROUNDS: Alzheimer's disease is the most common cause of dementia, and currently, there is no disease-modifying treatment. Favorable functional outcomes and reduction of amyloid levels were observed following transplantation of mesenchymal stem cells (MSCs) in animal studies. OBJECTIVES: We conducted a phase I clinical trial in nine patients with mild-to-moderate Alzheimer's disease dementia to evaluate the safety and dose-limiting toxicity of three repeated intracerebroventricular injections of human umbilical cord blood-derived MSCs (hUCB-MSCs). METHODS: We recruited nine mild-to-moderate Alzheimer's disease dementia patients from Samsung Medical Center, Seoul, Republic of Korea. Four weeks prior to MSC administration, the Ommaya reservoir was implanted into the right lateral ventricle of the patients. Three patients received a low dose (1.0 × 107 cells/2 mL), and six patients received a high dose (3.0 × 107 cells/2 mL) of hUCB-MSCs. Three repeated injections of MSCs were performed (4-week intervals) in all nine patients. These patients were followed up to 12 weeks after the first hUCB-MSC injection and an additional 36 months in the extended observation study. RESULTS: After hUCB-MSC injection, the most common adverse event was fever (n = 9) followed by headache (n = 7), nausea (n = 5), and vomiting (n = 4), which all subsided within 36 h. There were three serious adverse events in two participants that were considered to have arisen from the investigational product. Fever in a low dose participant and nausea with vomiting in another low dose participant each required extended hospitalization by a day. There were no dose-limiting toxicities. Five participants completed the 36-month extended observation study, and no further serious adverse events were observed. CONCLUSIONS: Three repeated administrations of hUCB-MSCs into the lateral ventricle via an Ommaya reservoir were feasible, relatively and sufficiently safe, and well-tolerated. Currently, we are undergoing an extended follow-up study for those who participated in a phase IIa trial where upon completion, we hope to gain a deeper understanding of the clinical efficacy of MSC AD therapy. TRIAL REGISTRATION: ClinicalTrials.gov NCT02054208. Registered on 4 February 2014. ClinicalTrials.gov NCT03172117. Registered on 1 June 2017.


Assuntos
Doença de Alzheimer , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doença de Alzheimer/terapia , Animais , Sangue Fetal , Seguimentos , Humanos
10.
Biomedicines ; 9(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34572277

RESUMO

The aim of this study was to evaluate the therapeutic effects and mechanisms of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) in an animal model of Duchenne muscular dystrophy (DMD). Mdx mice (3-5 months old) were administered five different doses of WJ-MSCs through their tail veins. A week after injection, grip strength measurements, creatine kinase (CK) assays, immunohistochemistry, and western blots were performed for comparison between healthy mice, mdx control mice, and WJ-MSC-injected mdx mice. WJ-MSCs exerted dose-dependent multisystem therapeutic effects in mdx mice, by decreasing CK, recovering normal behavior, regenerating muscle, and reducing apoptosis and fibrosis in skeletal muscle. We also confirmed that miR-499-5p is significantly downregulated in mdx mice, and that intravenous injection of WJ-MSCs enhanced its expression, leading to anti-fibrotic effects via targeting TGFßR 1 and 3. Thus, WJ-MSCs may represent novel allogeneic "off-the-shelf" cellular products for the treatment of DMD and possibly other muscle disorders.

11.
Cell Transplant ; 30: 9636897211019025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34044601

RESUMO

It has been widely accepted that mesenchymal stem cells (MSCs) can evade the immune surveillance of the recipient. However, emerging research cast doubt on whether MSCs are intrinsically immune-privileged. Previously, we observed that the transplantation of human MSCs (hMSCs) into the mouse parenchyma attracted a high infiltration of leukocytes into the injection tract. Thus, in order to reduce the immune responses generated by hMSCs, the aim of this study was to assess which immunosuppressant condition (dexamethasone only, tacrolimus only, or dexamethasone and tacrolimus together) would not only reduce the overall immune response but also enhance the persistence of MSCs engrafted into the caudate putamen of wild-type C57BL/6 mice. According to immunohistochemical analysis, compared to the hMSC only group, the administration of immunosuppressants (for all three conditions) reduced the infiltration of CD45-positive leukocytes and neutrophils at the site of injection. The highest hMSC persistence was detected from the group that received combinatorial administrations of dexamethasone and tacrolimus. Moreover, compared to the immunocompetent WT mouse, higher MSC engraftment was observed from the immunodeficient BALB/c mice. The results of this study support the use of immunosuppressants to tackle MSC-mediated immune responses and to possibly prolong the engraftment of transplanted MSCs.


Assuntos
Imunidade/efeitos dos fármacos , Imunossupressores/uso terapêutico , Transplante de Células-Tronco Mesenquimais/métodos , Tecido Parenquimatoso/transplante , Animais , Imunossupressores/farmacologia , Camundongos
12.
Stem Cells Int ; 2021: 6660186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815510

RESUMO

Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of Alzheimer's disease (AD). Previous studies suggested that the coculture of human MSCs with AD in an in vitro model reduced the expression of amyloid-beta 42 (Aß42) in the medium as well as the overexpression of amyloid-beta- (Aß-) degrading enzymes such as neprilysin (NEP). We focused on the role of primed MSCs (human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) exposed to an AD cell line via a coculture system) in reducing the levels of Aß and inhibiting cell death. We demonstrated that mouse groups treated with naïve MSCs and primed MSCs showed significant reductions in cell death, ubiquitin conjugate levels, and Aß levels, but the effects were greater in primed MSCs. Also, mRNA sequencing data analysis indicated that high levels of TGF-ß induced primed-MSCs. Furthermore, treatment with TGF-ß reduced Aß expression in an AD transgenic mouse model. These results highlighted AD environmental preconditioning is a promising strategy to reduce cell death and ubiquitin conjugate levels and maintain the stemness of MSCs. Further, these data suggest that human WJ-MSCs exposed to an AD environment may represent a promising and novel therapy for AD.

13.
J Vis Exp ; (168)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33616092

RESUMO

Mesenchymal stem cells (MSCs) have been studied for the treatment of various diseases. In neurodegenerative diseases involving defects in both the brain and the spinal cord, the route of administration is very important, because MSCs must migrate to both the brain and the spinal cord. This paper describes a method for administering MSCs into the spinal canal (intraspinal cavity injection) that can target the brain and spinal cord in a rat model. One million MSCs were injected into the spinal canals of rats at the level of lumbar vertebrae 2-3. After administration, the rats were euthanized at 0, 6, and 12 h post-injection. Optical imaging and quantitative real-time polymerase chain reaction (qPCR) were used to track the injected MSCs. The results of the present study demonstrated that MSCs administered via the spinal cavity could be detected subsequently in both the brain and spinal cord at 12 h. Intraspinal cavity injection has the advantage of not requiring general anesthesia and has few side effects. However, the drawback of the low migration rate of MSCs to the brain must be overcome.


Assuntos
Encéfalo/metabolismo , Movimento Celular , Rastreamento de Células/métodos , Injeções Espinhais/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Ratos , Ratos Sprague-Dawley
14.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467726

RESUMO

Mesenchymal stem cells (MSCs) have the potential to be a viable therapy against various diseases due to their paracrine effects, such as secretion of immunomodulatory, trophic and protective factors. These cells are known to be distributed within various organs and tissues. Although they possess the same characteristics, MSCs from different sources are believed to have different secretion potentials and patterns, which may influence their therapeutic effects in disease environments. We characterized the protein secretome of adipose (AD), bone marrow (BM), placenta (PL), and Wharton's jelly (WJ)-derived human MSCs by using conditioned media and analyzing the secretome by mass spectrometry and follow-up bioinformatics. Each MSC secretome profile had distinct characteristics depending on the source. However, the functional analyses of the secretome from different sources showed that they share similar characteristics, such as cell migration and negative regulation of programmed cell death, even though differences in the composition of the secretome exist. This study shows that the secretome of fetal-derived MSCs, such as PL and WJ, had a more diverse composition than that of AD and BM-derived MSCs, and it was assumed that their therapeutic potential was greater because of these properties.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Mesenquimais/metabolismo , Placenta/citologia , Cordão Umbilical/citologia , Geleia de Wharton/citologia , Medula Óssea , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Cromatografia Líquida , Análise por Conglomerados , Técnicas de Cocultura , Biologia Computacional , Meios de Cultivo Condicionados , Meios de Cultura Livres de Soro , Feminino , Humanos , Espectrometria de Massas , Osteogênese , Gravidez , Proteômica , Espectrometria de Massas em Tandem
15.
Stem Cells ; 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107705

RESUMO

In the peripheral nervous system (PNS), proper development of Schwann cells (SCs) contributing to axonal myelination is critical for neuronal function. Impairments of SCs or neuronal axons give rise to several myelin-related disorders, including dysmyelinating and demyelinating diseases. Pathological mechanisms, however, have been understood at the elementary level and targeted therapeutics has remained undeveloped. Here, we identify Fibulin 5 (FBLN5), an extracellular matrix (ECM) protein, as a key paracrine factor of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to control the development of SCs. We show that co-culture with WJ-MSCs or treatment of recombinant FBLN5 promotes the proliferation of SCs through ERK activation, whereas FBLN5-depleted WJ-MSCs do not. We further reveal that during myelination of SCs, FBLN5 binds to Integrin and modulates actin remodeling, such as the formation of lamellipodia and filopodia, through RAC1 activity. Finally, we show that FBLN5 effectively restores the myelination defects of SCs in the zebrafish model of Charcot-Marie-Tooth (CMT) type 1, a representative demyelinating disease. Overall, our data propose human WJ-MSCs or FBLN5 protein as a potential treatment for myelin-related diseases, including CMT.

16.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993025

RESUMO

Mesenchymal stem cells (MSCs) are safe, and they have good therapeutic efficacy through their paracrine action. However, long-term culture to produce sufficient MSCs for clinical use can result in side-effects, such as an inevitable senescence and the reduction of the therapeutic efficacy of the MSCs. In order to overcome this, the primary culture conditions of the MSCs can be modified to simulate the stem cells' niche environment, resulting in accelerated proliferation, the achievement of the target production yield at earlier passages, and the improvement of the therapeutic efficacy. We exposed Wharton's jelly-derived MSCs (WJ-MSCs) to pressure stimuli during the primary culture step. In order to evaluate the proliferation, stemness, and therapeutic efficacy of WJ-MSCs, image, genetic, and Western blot analyses were carried out. Compared with standard incubation culture conditions, the cell proliferation was significantly improved when the WJ-MSCs were exposed to pressure stimuli. However, the therapeutic efficacy (the promotion of cell proliferation and anti-apoptotic effects) and the stemness of the WJ-MSCs was maintained, regardless of the culture conditions. Exposure to pressure stimuli is a simple and efficient way to improve WJ-MSC proliferation without causing changes in stemness and therapeutic efficacy. In this way, clinical-grade WJ-MSCs can be produced rapidly and used for therapeutic applications.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina , Estresse Mecânico , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia
17.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872523

RESUMO

Extracellular matrix (ECM) components play an important role in maintaining skeletal muscle function, but excessive accumulation of ECM components interferes with skeletal muscle regeneration after injury, eventually inducing fibrosis. Increased oxidative stress level caused by dystrophin deficiency is a key factor in fibrosis in Duchenne muscular dystrophy (DMD) patients. Mesenchymal stem cells (MSCs) are considered a promising therapeutic agent for various diseases involving fibrosis. In particular, the paracrine factors secreted by MSCs play an important role in the therapeutic effects of MSCs. In this study, we investigated the effects of MSCs on skeletal muscle fibrosis. In 2-5-month-old mdx mice intravenously injected with 1 × 105 Wharton's jelly (WJ)-derived MSCs (WJ-MSCs), fibrosis intensity and accumulation of calcium/necrotic fibers were significantly decreased. To elucidate the mechanism of this effect, we verified the effect of WJ-MSCs in a hydrogen peroxide-induced fibrosis myotubes model. In addition, we demonstrated that matrix metalloproteinase-1 (MMP-1), a paracrine factor, is critical for this anti-fibrotic effect of WJ-MSCs. These findings demonstrate that WJ-MSCs exert anti-fibrotic effects against skeletal muscle fibrosis, primarily via MMP-1, indicating a novel target for the treatment of muscle diseases, such as DMD.


Assuntos
Metaloproteinase 13 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/citologia , Distrofia Muscular de Duchenne/terapia , Administração Intravenosa , Animais , Linhagem Celular , Dipeptídeos/farmacologia , Matriz Extracelular/metabolismo , Feminino , Peróxido de Hidrogênio/efeitos adversos , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos mdx , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Gravidez , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Resultado do Tratamento
18.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977637

RESUMO

Mesenchymal stem cells (MSCs) are a useful source for cell-based therapy of a variety of immune-mediated diseases, including neurodegenerative disorders. However, poor migration ability and survival rate of MSCs after brain transplantation hinder the therapeutic effects in the disease microenvironment. Therefore, we attempted to use a preconditioning strategy with pharmacological agents to improve the cell proliferation and migration of MSCs. In this study, we identified ethionamide via the screening of a drug library, which enhanced the proliferation of MSCs. Preconditioning with ethionamide promoted the proliferation of Wharton's jelly-derived MSCs (WJ-MSCs) by activating phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)1/2 signaling. Preconditioning with ethionamide also enhanced the migration ability of MSCs by upregulating expression of genes associated with migration, such as C-X-C motif chemokine receptor 4 (CXCR4) and C-X-C motif chemokine ligand 12 (CXCL12). Furthermore, preconditioning with ethionamide stimulated the secretion of paracrine factors, including neurotrophic and growth factors in MSCs. Compared to naïve MSCs, ethionamide-preconditioned MSCs (ETH-MSCs) were found to survive longer in the brain after transplantation. These results suggested that enhancing the biological process of MSCs induced by ethionamide preconditioning presents itself as a promising strategy for enhancing the effectiveness of MSCs-based therapies.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Etionamida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Xenoenxertos , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos
19.
Int J Mol Sci ; 21(15)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752272

RESUMO

Closely linked to Alzheimer's disease (AD), the pathological spectrum of vascular cognitive impairment (VCI) is known to be wide and complex. Considering that multiple instead of a single targeting approach is considered a treatment option for such complicated diseases, the multifaceted aspects of mesenchymal stem cells (MSCs) make them a suitable candidate to tackle the heterogeneity of VCI. MSCs were delivered via the intracerebroventricular (ICV) route in mice that were subjected to VCI by carotid artery stenosis. VCI was induced in C57BL6/J mice wild type (C57VCI) mice by applying a combination of ameroid constrictors and microcoils, while ameroid constrictors alone were bilaterally applied to 5xFAD (transgenic AD mouse model) mice (5xVCI). Compared to the controls (minimal essential medium (MEM)-injected C57VCI mice), changes in spatial working memory were not noted in the MSC-injected C57VCI mice, and unexpectedly, the mortality rate was higher. In contrast, compared to the MEM-injected 5xVCI mice, mortality was not observed, and the spatial working memory was also improved in MSC-injected 5xVCI mice. Disease progression of the VCI-induced mice seems to be affected by the method of carotid artery stenosis and due to this heterogeneity, various factors must be considered to maximize the therapeutic benefits exerted by MSCs. Factors, such as the optimal MSC injection time point, cell concentration, sacrifice time point, and immunogenicity of the transplanted cells, must all be adequately addressed so that MSCs can be appropriately and effectively used as a treatment option for VCI.


Assuntos
Doença de Alzheimer/terapia , Disfunção Cognitiva/terapia , Demência Vascular/terapia , Modelos Animais de Doenças , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Doença de Alzheimer/genética , Animais , Estenose das Carótidas/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Demência Vascular/etiologia , Demência Vascular/fisiopatologia , Progressão da Doença , Humanos , Injeções Intraventriculares , Estimativa de Kaplan-Meier , Memória de Curto Prazo/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transplante Heterólogo
20.
Int J Mol Sci ; 21(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357509

RESUMO

Due to their multifactorial aspects, mesenchymal stem cells (MSCs) have been widely established as an attractive and potential candidate for the treatment of a multitude of diseases. A substantial number of studies advocate that MSCs are poorly immunogenic. In several studies, however, immune responses were observed following injections of xenogeneic donor MSCs. In this study, the aim was to examine differences in immune responses exerted based on transplantations of xenogeneic, syngeneic, and allogeneic MSCs in the wild-type mouse brain. Xenogeneic, allogeneic, and syngeneic MSCs were intracerebrally injected into C57BL/6 mice. Mice were sacrificed one week following transplantation. Based on immunohistochemical (IHC) analysis, leukocytes and neutrophils were expressed at the injection sites in the following order (highest to lowest) xenogeneic, allogeneic, and syngeneic. In contrast, microglia and macrophages were expressed in the following order (highest to lowest): syngeneic, allogeneic, and xenogeneic. Residual human MSCs in the mouse brain were barely detected after seven days. Although the discrepancy between leukocytes versus macrophages/microglia infiltration should be resolved, our results overall argue against the previous notions that MSCs are poorly immunogenic and that modulation of immune responses is a prerequisite for preclinical and clinical studies in MSC therapy of central nervous system diseases.


Assuntos
Leucócitos/metabolismo , Macrófagos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Microglia/metabolismo , Neutrófilos/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Transplante Heterólogo/métodos , Transplante Homólogo/métodos , Transplante Isogênico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA