Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Negl Trop Dis ; 18(5): e0012188, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805557

RESUMO

BACKGROUND: Angiostrongylus cantonensis is a parasite that mainly infects the heart and pulmonary arteries of rats and causes human eosinophilic meningitis or meningoencephalitis in certain geographical areas. Current diagnostic methods include detection of the parasite in cerebrospinal fluid (CSF) and eosinophilic immune examination after lumbar puncture, which may be risky and produce false-positive results. 18F- Fluorodeoxyglucose (FDG), a Positron emission tomography (PET) tracer, has been used to assess different pathological or inflammatory changes in the brains of patients. In this study, we hypothesized that A. cantonensis infection-induced inflammatory and immunomodulatory factors of eosinophils result in localized pathological changes in the brains of non-permissive hosts, which could be analyzed using in vivo 18F-FDG PET imaging. METHODOLOGY/FINDINGS: Non-permissive host ICR mice and permissive host SD rats were infected with A. cantonensis, and the effects of the resulting inflammation on 18F-FDG uptake were characterized using PET imaging. We also quantitatively measured the distributed uptake values of different brain regions to build an evaluated imaging model of localized neuropathological damage caused by eosinophilic inflammation. Our results showed that the uptake of 18F-FDG increased in the cerebellum, brainstem, and limbic system of mice at three weeks post-infection, whereas the uptake in the rat brain was not significant. Immunohistochemical staining and western blotting revealed that Iba-1, a microglia-specific marker, significantly increased in the hippocampus and its surrounding area in mice after three weeks of infection, and then became pronounced after four weeks of infection; while YM-1, an eosinophilic chemotactic factor, in the hippocampus and midbrain, increased significantly from two weeks post-infection, sharply escalated after three weeks of infection, and peaked after four weeks of infection. Cytometric bead array (CBA) analysis revealed that the expression of TNF in the serum of mice increased concomitantly with the prolongation of infection duration. Furthermore, IFN-γ and IL-4 in rat serum were significantly higher than in mouse serum at two weeks post-infection, indicating significantly different immune responses in the brains of rats and mice. We suggest that 18F-FDG uptake in the host brain may be attributed to the accumulation of large numbers of immune cells, especially the metabolic burst of activated eosinophils, which are attracted to and induced by activated microglia in the brain. CONCLUSIONS: An in vivo 18F-FDG/PET imaging model can be used to evaluate live neuroinflammatory pathological changes in the brains of A. cantonensis-infected mice and rats.


Assuntos
Angiostrongylus cantonensis , Encéfalo , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Ratos Sprague-Dawley , Infecções por Strongylida , Animais , Angiostrongylus cantonensis/imunologia , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Infecções por Strongylida/diagnóstico por imagem , Infecções por Strongylida/patologia , Encéfalo/parasitologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/imunologia , Camundongos , Ratos , Eosinófilos/imunologia , Inflamação/imunologia , Masculino , Modelos Animais de Doenças , Lectinas/metabolismo , Feminino , beta-N-Acetil-Hexosaminidases
2.
Nutrients ; 15(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960147

RESUMO

Colorectal cancer (CRC) is one of the most common cancers and is the second leading cause of cancer-related death in the world. Due to the westernization of diets, young patients with CRC are often diagnosed at advanced stages with an associated poor prognosis. Improved lifestyle choices are one way to minimize CRC risk. Among diet choices is the inclusion of bee propolis, long recognized as a health supplement with anticancer activities. Understanding the effect of propolis on the gut environment is worth exploring, and especially its associated intratumoral immune changes and its anticancer effect on the occurrence and development of CRC. In this study, early stage CRC was induced with 1,2-dimethylhydrazine (DMH) and dextran sulfate sodium (DSS) for one month in an animal model, without and with propolis administration. The phenotypes of early stage CRC were evaluated by X-ray microcomputed tomography and histologic examination. The gut immunity of the tumor microenvironment was assessed by immunohistochemical staining for tumor-infiltrating lymphocytes (TILs) and further comparative quantification. We found that the characteristics of the CRC mice, including the body weight, tumor loading, and tumor dimensions, were significantly changed due to propolis administration. With further propolis administration, the CRC tissues of DMH/DSS-treated mice showed decreased cytokeratin 20 levels, a marker for intestinal epithelium differentiation. Additionally, the signal intensity and density of CD3+ and CD4+ TILs were significantly increased and fewer forkhead box protein P3 (FOXP3) lymphocytes were observed in the lamina propria. In conclusion, we found that propolis, a natural supplement, potentially prevented CRC progression by increasing CD3+ and CD4+ TILs and reducing FOXP3 lymphocytes in the tumor microenvironment of early stage CRC. Our study could suggest a promising role for propolis in complementary medicine as a food supplement to decrease or prevent CRC progression.


Assuntos
Neoplasias Colorretais , Própole , Humanos , Camundongos , Animais , Neoplasias Colorretais/patologia , Estadiamento de Neoplasias , Própole/farmacologia , Própole/uso terapêutico , Microambiente Tumoral , Microtomografia por Raio-X , Fatores de Transcrição Forkhead/metabolismo
3.
Pharmaceuticals (Basel) ; 16(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242547

RESUMO

Studies of the neurobiological causes of anxiety disorders have suggested that the γ-aminobutyric acid (GABA) system increases synaptic concentrations and enhances the affinity of GABAA (type A) receptors for benzodiazepine ligands. Flumazenil antagonizes the benzodiazepine-binding site of the GABA/benzodiazepine receptor (BZR) complex in the central nervous system (CNS). The investigation of flumazenil metabolites using liquid chromatography (LC)-tandem mass spectrometry will provide a complete understanding of the in vivo metabolism of flumazenil and accelerate radiopharmaceutical inspection and registration. The main goal of this study was to investigate the use of reversed-phase high performance liquid chromatography (PR-HPLC), coupled with electrospray ionization triple-quadrupole tandem mass spectrometry (ESI-QqQ MS), to identify flumazenil and its metabolites in the hepatic matrix. Carrier-free nucleophilic fluorination with an automatic synthesizer for [18F]flumazenil, combined with nano-positron emission tomography (NanoPET)/computed tomography (CT) imaging, was used to predict the biodistribution in normal rats. The study showed that 50% of the flumazenil was biotransformed by the rat liver homogenate in 60 min, whereas one metabolite (M1) was a methyl transesterification product of flumazenil. In the rat liver microsomal system, two metabolites were identified (M2 and M3), as their carboxylic acid and hydroxylated ethyl ester forms between 10 and 120 min, respectively. A total of 10-30 min post-injection of [18F]flumazenil showed an immediate decreased in the distribution ratio observed in the plasma. Nevertheless, a higher ratio of the complete [18F]flumazenil compound could be used for subsequent animal studies. [18F] According to in vivo nanoPET/CT imaging and ex vivo biodistribution assays, flumazenil also showed significant effects on GABAA receptor availability in the amygdala, prefrontal cortex, cortex, and hippocampus in the rat brain, indicating the formation of metabolites. We reported the completion of the biotransformation of flumazenil by the hepatic system, as well as [18F]flumazenil's potential as an ideal ligand and PET agent for the determination of the GABAA/BZR complex for multiplex neurological syndromes at the clinical stage.

4.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986516

RESUMO

Clinical studies have demonstrated that the γ-aminobutyric acid type A (GABAA) receptor complex plays a central role in the modulation of anxiety. Conditioned fear and anxiety-like behaviors have many similarities at the neuroanatomical and pharmacological levels. The radioactive GABA/BZR receptor antagonist, fluorine-18-labeled flumazenil, [18F]flumazenil, behaves as a potential PET imaging agent for the evaluation of cortical damage of the brain in stroke, alcoholism, and for Alzheimer disease investigation. The main goal of our study was to investigate a fully automated nucleophilic fluorination system, with solid extraction purification, developed to replace traditional preparation methods, and to detect underlying expressions of contextual fear and characterize the distribution of GABAA receptors in fear-conditioned rats by [18F]flumazenil. A carrier-free nucleophilic fluorination method using an automatic synthesizer with direct labeling of a nitro-flumazenil precursor was implemented. The semi-preparative high-performance liquid chromatography (HPLC) purification method (RCY = 15-20%) was applied to obtain high purity [18F]flumazenil. Nano-positron emission tomography (NanoPET)/computed tomography (CT) imaging and ex vivo autoradiography were used to analyze the fear conditioning of rats trained with 1-10 tone-foot-shock pairings. The anxiety rats had a significantly lower cerebral accumulation (in the amygdala, prefrontal cortex, cortex, and hippocampus) of fear conditioning. Our rat autoradiography results also supported the findings of PET imaging. Key findings were obtained by developing straightforward labeling and purification procedures that can be easily adapted to commercially available modules for the high radiochemical purity of [18F]flumazenil. The use of an automatic synthesizer with semi-preparative HPLC purification would be a suitable reference method for new drug studies of GABAA/BZR receptors in the future.

5.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835185

RESUMO

[99mTc]Tc TRODAT-1 is a widely used single photon emission tomography (SPECT) radiopharmaceutical in Asian practice for early detection of central dopaminergic disorders. However, its imaging quality remains sub-optimal. To overcome this problem, mannitol, an osmotic agent was used to observe its effect on improving striatal [99mTc]Tc TRODAT-1 uptake in rat brain by titrated human dosages to investigate a clinically feasible way to improve human imaging quality. [99mTc]Tc TRODAT-1 synthesis and quality control were performed as described. Sprague-Dawley rats were used for this study. The animal in vivo nanoSPECT/CT and ex vivo autoradiography were employed to observe and verify the striatal [99mTc]Tc TRODAT-1 uptake in rat brains using clinically equivalent doses (i.e., 0, 1 and 2 mL groups, each n = 5) of mannitol (20% w/v, equivalent to 200 mg/mL) by an intravenous administration. Specific binding ratios (SBRs) were calculated to express the central striatal uptake in different experimental groups. In the NanoSPECT/CT imaging, the highest SBRs of striatal [99mTc]Tc TRODAT-1 were reached at 75-90 min post-injection. The averaged striatal SBRs were 0.85 ± 0.13 (2 mL normal saline, the control group), 0.94 ± 0.26 (1 mL mannitol group) and 1.36 ± 0.12 (2 mL mannitol group, p < 0.01 which were significantly different than the control as well as 1 mL mannitol groups (p < 0.05). The SBRs from ex vivo autoradiography also showed a comparable trend of the striatal [99mTc]Tc TRODAT-1 uptake in the 2 mL, 1 mL mannitol and the control groups (1.76 ± 0.52, 0.91 ± 0.29, and 0.21 ± 0.03, respectively, p < 0.05). No remarkable changes of vital signs were found in the mannitol groups and the controls. Pre-treated mannitol revealed a significant increase of the central striatal [99mTc]Tc TRODAT-1 uptake in a rat model which not only enabled us to perform pre-clinical studies of dopaminergic related disorders but also provided a potential way to further optimize image quality in clinical practice.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Compostos de Organotecnécio , Humanos , Ratos , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ratos Sprague-Dawley , Tropanos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Dopamina/metabolismo , Compostos Radiofarmacêuticos , Modelos Animais
6.
Nanoscale ; 15(7): 3375-3386, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722930

RESUMO

In this study, we demonstrate inverted PTB7:PC71BM polymer solar cells (PSCs) featuring a solution-processed s-MoO3 hole transport layer (HTL) that can, after thermal aging at 85 °C, retain their initial power conversion efficiency (PCE) for at least 2200 h. The T80 lifetimes of the PSCs incorporating the novel s-MoO3 HTL were up to ten times greater than those currently reported for PTB7- or low-band-gap polymer:PCBM PSCs, the result of the inhibition of burn-in losses and long-term degradation under various heat-equivalent testing conditions. We used X-ray photoelectron spectroscopy (XPS) to study devices containing thermally deposited t-MoO3 and s-MoO3 HTLs and obtain a mechanistic understanding of how the robust HTL is formed and how it prevented the PSCs from undergoing thermal degradation. Heat tests revealed that the mechanisms of thermal inter-diffusion and interaction of various elements within active layer/HTL/Ag electrodes controlled by the s-MoO3 HTL were dramatically different from those controlled by the t-MoO3 HTL. The new prevention mechanism revealed here can provide the conceptual strategy for designing the buffer layer in the future. The PCEs of PSCs featuring s-MoO3 HTLs, measured in damp-heat (65 °C/65% RH; 85 °C per air) and light soaking tests, confirmed their excellent stability. Such solution-processed MoO3 HTLs appear to have great potential as replacements for commonly used t-MoO3 HTLs.

7.
Sci Rep ; 12(1): 14842, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050420

RESUMO

This paper describes a simple electrospinning approach for fabricating poly(3-hexylthiophene) (P3HT)/poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) semiconductive nanofiber mat triboelectric nanogenerators (TENGs). Measurements of the electrical properties of the P3HT/PVDF-HFP semiconductive nanofiber TENGs revealed that the output voltage could be enhanced up to 78 V with an output current of 7 µA. The output power of the device reached 0.55 mW, sufficient to power 500 red light-emitting diodes instantaneously, as well as a digital watch. The P3HT/PVDF-HFP semiconductive nanofiber TENG could be used not only as a self-powered device but also as a sensor for monitoring human action. Furthermore, it displayed good durability when subjected to 20,000 cycles of an external force test.

8.
Life (Basel) ; 12(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743943

RESUMO

Emerging molecular and precision medicine makes nuclear medicine a de facto choice of imaging, especially in the era of target-oriented medical care. Nuclear medicine is minimally invasive, four-dimensional (space and time or dynamic space), and functional imaging using radioactive biochemical tracers in evaluating human diseases on an anatomically configured image. Many radiopharmaceuticals are also used in therapies. However, there have been concerns over the emission of radiation from the radionuclides, resulting in wrongly neglecting the potential benefits against little or any risks at all of imaging to the patients. The sound concepts of radiation and radiation protection are critical for promoting the optimal use of radiopharmaceuticals to patients, and alleviating concerns from caregivers, nuclear medicine staff, medical colleagues, and the public alike.

9.
Int J Oncol ; 60(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35417036

RESUMO

The chromosome segregation 1­like (CSE1L) protein, which regulates cellular mitosis and apoptosis, was previously found to be overexpressed in colorectal cancer (CRC) cells harboring mutations. Therefore, regulating CSE1L expression may confer chemotherapeutic effects against CRC. The gut microflora can regulate gene expression in colonic cells. In particular, metabolites produced by the gut microflora, including the short­chain fatty acid butyrate, have been shown to reduce CRC risk. Butyrates may exert antioncogenic potential in CRC cells by modulating p53 expression. The present study evaluated the association between CSE1L expression and butyrate treatment from two non­transformed colon cell lines (CCD­18Co and FHC) and six CRC cell lines (LS 174T, HCT116 p53+/+, HCT116 p53­/­, Caco­2, SW480 and SW620). Lentiviral knockdown of CSE1L and p53, reverse transcription­quantitative PCR (CSE1L, c­Myc and p53), western blotting [CSE1L, p53, cyclin (CCN) A2, CCNB2 and CCND1], wound healing assay (cell migration), flow cytometry (cell cycle analysis) and immunofluorescence staining (CSE1L and tubulin) were adopted to verify the effects of butyrate on CSE1L­expressing CRC cells. The butyrate­producing gut bacteria Butyricicoccus pullicaecorum was administered to mice with 1,2­dimethylhydrazine­induced colon tumors before the measurement of CSE1L expression. The effects of B. pullicaecorum on CSE1L expression were then assessed by immunohistochemical staining for CSE1L and p53 in tissues from CRC­bearing mice. Non­cancerous colon cells with the R273H p53 mutation or CRC cells haboring p53 mutations were found to exhibit significantly higher CSE1L expression levels. CSE1L knockdown in HCT116 p53­/­ cells resulted in G1­and G2/M­phase cell cycle arrest. Furthermore, in HCT116 p53­/­ cells, CSE1L expression was already high at interphase, increased at prophase, peaked during metaphase before declining at cytokinesis but remained relatively high compared with that in HCT116 expressing wild­type p53. Significantly decreased expression levels of CSE1L were also observed in HCT116 p53­/­ cells that were treated with butyrate for 24 h. In addition, the migration of HCT116 p53­/­ cells was significantly decreased after CSE1L knockdown or butyrate treatment. Tumors with more intense nuclear p53 staining and weaker CSE1L staining were found in mice bearing DMH/DSS­induced CRC that were administered with B. pullicaecorum. Taken together, the results indicated that butyrate can impair CSE1L­induced tumorigenic potential. In conclusion, butyrate­producing microbes, such as B. pullicaecorum, may reverse the genetic distortion caused by p53 mutations in CRC by regulating CSE1L expression levels.


Assuntos
Butiratos , Proteína de Suscetibilidade a Apoptose Celular , Neoplasias Colorretais , Proteína Supressora de Tumor p53 , Animais , Apoptose , Butiratos/farmacologia , Células CACO-2 , Proliferação de Células , Proteína de Suscetibilidade a Apoptose Celular/genética , Segregação de Cromossomos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Suplementos Nutricionais , Células HCT116 , Humanos , Camundongos , Mutação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Diagnostics (Basel) ; 11(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34943506

RESUMO

In bladder cancer, urothelial carcinoma is the most common histologic subtype, accounting for more than 90% of cases. Pathogenic effects due to the dysbiosis of gut microbiota are localized not only in the colon, but also in regulating bladder cancer distally. Butyrate, a short-chain fatty acid produced by gut microbial metabolism, is mainly studied in colon diseases. Therefore, the resolution of the anti-cancer effects of butyrate-producing microbes on bladder urothelial cells and knowledge of the butyrate-responsive molecules must have clinical significance. Here, we demonstrate a correlation between urothelial cancer of the bladder and Butyricicoccus pullicaecorum. This butyrate-producing microbe or their metabolite, butyrate, mediated anti-cancer effects on bladder urothelial cells by regulating cell cycle, cell growth, apoptosis, and gene expression. For example, a tumor suppressor against urothelial cancer of the bladder, bladder cancer-associated protein, was induced in butyrate-treated HT1376 cells, a human urinary bladder cancer cell line. In conclusion, urothelial cancer of the bladder is a significant health problem. To improve the health of bladder urothelial cells, supplementation of B. pullicaecorum may be necessary and can further regulate butyrate-responsive molecular signatures.

11.
J Cell Mol Med ; 25(15): 7418-7425, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216182

RESUMO

We previously showed a hydroxamic acid-based histone deacetylase inhibitor (HDACi), compound 13, provides neuroprotection against chronic cerebral hypoperfusion (CCH) both in vitro under oxygen-glucose deprivation (OGD) conditions and in vivo under bilateral common carotid artery occlusion (BCCAO) conditions. Intriguingly, the protective effect of this HDACi is via H3K14 or H4K5 acetylation-mediated differential BDNF isoform activation. BDNF is involved in cell proliferation and differentiation in development, synaptic plasticity and in learning and memory related with receptors or synaptic proteins. B6 mice underwent BCCAO and were randomized into 4 groups; a sham without BCCAO (sham), BCCAO mice injected with DMSO (DMSO), mice injected with HDACi-compound 13 (compound 13) and mice injected with suberoylanilide hydroxamic acid (SAHA). The cortex and hippocampus of mice were harvested at 3 months after BCCAO, and levels of BDNF, AMPA receptor and dopamine receptors (D1, D2 and D3) were studied using Western blotting analysis or immunohistochemistry. We found that the AMPA receptor plays a key role in the molecular mechanism of this process by modulating HDAC. This protective effect of HDACi may be through BDNF; therefore, activation of this downstream signalling molecule, for example by AMPA receptors, could be a therapeutic target or intervention applied under CCH conditions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Demência Vascular/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Receptores de AMPA/metabolismo , Animais , Arteriopatias Oclusivas/complicações , Artérias Carótidas/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Demência Vascular/etiologia , Demência Vascular/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia
12.
Drug Des Devel Ther ; 15: 2577-2591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168430

RESUMO

INTRODUCTION: Novel radiotracer development for imaging dopamine transporters is a subject of interest because although [99mTc]TRODAT-1, [123I]ß-CIT, and [123I]FP-CIT are commercially available; 99Mo/99mTc generator is in short supply and 123I production is highly dependent on compact cyclotron. Therefore, we designed a novel positron emission tomography (PET) tracer based on a tropane derivative through C-2 modification to conjugate NOTA for chelating 68Ga, a radioisotope derived from a 68Ge/68Ga generator. METHODS: IPCAT-NOTA 22 was synthesized and labeled with [68Ga]GaCl4 - at room temperature. Biological studies on serum stability, LogP, and in vitro autoradiography (binding assay and competitive assay) were performed. Furthermore, ex vivo autoradiography, biodistribution, and dynamic PET imaging studies were performed in Sprague Dawley rats. RESULTS: [68Ga]IPCAT-NOTA 24 obtained had a radiochemical yield of ≥90% and a specific activity of 4.25 MBq/nmol. [68Ga]IPCAT-NOTA 24 of 85% radiochemical purity (RCP%) was stable at 37°C for up to 60 minutes in serum with a lipophilicity of 0.88. The specific binding ratio (SBR%) reached 15.8 ± 6.7 at 60 minutes, and the 85% specific uptake could be blocked through co-injection at 100- and 1000-fold of the cold precursor in in vitro binding studies. Tissue regional distribution studies in rats with [68Ga]IPCAT-NOTA 24 showed striatal uptake (0.02% at 5 minutes and 0.007% at 60 minutes) with SBR% of 6%, 25%, and 62% at 5-15, 30-40, and 60-70 minutes, respectively, in NanoPET studies. The RCP% of [68Ga]IPCAT-NOTA 24 at 30 minutes in vivo remained 67.65%. CONCLUSION: Data described here provide new information on the design of PET probe of conjugate/pendent approach for DAT imaging. Another chelator or another direct method of intracranial injection must be used to prove the relation between [68Ga]IPCAT-NOTA 24 uptake and transporter localization.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Radioisótopos de Gálio/química , Compostos Heterocíclicos com 1 Anel/química , Tomografia por Emissão de Pósitrons/métodos , Animais , Autorradiografia/métodos , Compostos Heterocíclicos com 1 Anel/síntese química , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Distribuição Tecidual
13.
Int J Radiat Biol ; 97(7): 916-925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34003708

RESUMO

PURPOSE: The dicentric chromosome assay (DCA), the gold standard for radiation biodosimetry, evaluates an individual absorbed radiation dose by the analysis of DNA damage in human lymphocytes. The conventional (C-DCA) and QuickScan (QS-DCA) scoring methods are sensitive for estimating radiation dose. The Biodosimetry Laboratory at Institute of Nuclear Energy Research (INER), Taiwan, participated in intercomparison exercises conducted by Health Canada (HC) in 2014, 2015 and 2018 to validate the laboratory's accuracy and performance. MATERIAL AND METHODS: Blood samples for the conventional dose response curve for Taiwan were irradiated with 0, 0.25, 0.5, 1, 2, 3, 4 and 5 Gy. Ten blind blood samples were provided by HC. Either or both of two methods of conventional (C) or QuickScan (QS) scoring could be chosen for the HC's intercomparison. For C-DCA triage scoring, only cells with 46 centromeres were counted and each scorer recorded the number of dicentrics in the first 50 metaphases or stopped scoring when 30 dicentrics were reached. Scorers also recorded how much time it took to analyze 10, 20, and 50 cells. Subsequently, the data were entered into the Dose Estimate software (DoseEstimate_v5.1) and dose estimates were calculated. With QS-DCA scoring, a minimum of 50 metaphase cells (or 30 dicentrics) were scored in apparently complete metaphases without verification of exactly 46 centromeres. RESULTS: For the blinded blood samples irradiated at HC and shipped to INER, the mean absolute deviation (MAD) derived after scoring 50 cells for C-DCA and QS-DCA was <0.5 Gy for all three intercomparisons, meeting the criteria for acceptance. CONCLUSION: The results indicated that the Biodosimetry Laboratory at INER can provide reliable dose estimates in the case of a large-scale radiation accident.


Assuntos
Radiometria/métodos , Cromossomos Humanos/genética , Cromossomos Humanos/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Validade Social em Pesquisa , Taiwan
14.
Am J Trop Med Hyg ; 104(1): 323-328, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146122

RESUMO

Protobothrops mucrosquamatus is one of the common venomous snakes in Southeast Asia. This retrospective cohort study conducted in six medical institutions in Taiwan aimed to obtain information on the optimal management strategies for P. mucrosquamatus snakebite envenomation. Data were extracted from the Chang Gung Research Database from January 2006 to December 2016. The association between early antivenom administration and patient demographics, pain requiring treatment with analgesic injections, and hospital length of stay was analyzed. A total of 195 patients were enrolled; 130 were administered antivenom within 1 hour after emergency department arrival (early group), whereas 65 were treated later than 1 hour after arrival (late group). No in-hospital mortality was identified. The difference in surgical intervention rates between the early and late groups was statistically insignificant (P = 0.417). Compared with the early group, the late group showed a higher rate of antivenom skin test performance (46.9% versus 63.1%, respectively, P = 0.033), longer hospital stay (42 ± 62 hours versus 99 ± 70 hours, respectively, P = 0.016), and higher rate of incidences of pain requiring treatment with analgesic injections (29.2% versus 46.2%, respectively, P = 0.019). After adjusting for confounding factors, early antivenom administration was associated with decreased pain requiring treatment with analgesic injections (adjusted odds ratio: 0.51, 95% CI: 0.260-0.985). Antivenom administration within 1 hour of arrival was associated with a decreased likelihood of experiencing pain and hospital length of stay in patients with P. mucrosquamatus snakebites. Antivenom skin testing was associated with delays in antivenom administration.


Assuntos
Antivenenos/administração & dosagem , Antivenenos/uso terapêutico , Serviço Hospitalar de Emergência , Mordeduras de Serpentes/terapia , Trimeresurus/fisiologia , Adulto , Idoso , Animais , Esquema de Medicação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
J Adv Res ; 22: 7-20, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31956438

RESUMO

Tumor metastasis or recurrence often occurs in patients with curative resection of colorectal cancer (CRC). Placental-specific 8 (PLAC8), which has increased expression in stool, may be associated with CRC recurrence. Insights into the role of PLAC8 in CRC recurrence and its clinical significance may support to develop strategies for preventing CRC recurrence and deterioration. Clinical tissues, cell and animal models were used to clarify the roles of PLAC8 in CRC tumorigenesis, invasion, and migration. Next-generation sequencing of 16S ribosomal DNA has been used to assess the gut microbiota in stool of CRC patients. We found that PLAC8 was upregulated in tissues from patients with late-stage CRC. In our in vitro studies, PLAC8 was dynamically regulated in mitotic cells. Overexpressed PLAC8 was nucleated at the centrosome during mitosis, and therefore, PLAC8 overexpression might increase cell growth and migration (all p < 0.05). The tumorigenic and invasive effects of PLAC8 on CRC cells were also confirmed in a xenograft mouse model. We further identified reduced levels of two butyrate-producing organisms, Butyricicoccus and Prevotella spp., in stools from CRC patients. We found that butyrate downregulated PLAC8 expression and induced apoptosis in PLAC8-overexpressing cells. Our data suggests that PLAC8 gene and protein expression and dysbiosis of gut microflora, especially in butyrate-producing microorganisms, may be indicators of CRC progression.

16.
Acta Trop ; 203: 105293, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31821788

RESUMO

Antivenom reactions are a common complication of snake antivenom. This study aimed to identify predicators of antivenom reaction and the involvement of antivenom skin test in antivenom reaction development. This retrospective cohort study was conducted in six medical institutions in Taiwan. Data were extracted from the Chang Gung Research Database (CGRD) from January 2006 to December 2016. The association between antivenom reaction and patient demographics, type and dose of antivenom, and skin test results was analyzed. The study enrolled 799 patients, including 219 who developed antivenom reactions. Compared to patients receiving both freeze-dried hemorrhagic (FH) and freeze-dried neurotoxic (FN) antivenom, those administered a single type had a lower antivenom reaction risk (adjusted odds ratios [aORs]: 0.5 and 0.4, 95% confidence interval [CI]: 0.35-0.74 and 0.24-0.69, FH and FN respectively). Patients administered a higher antivenom dose (≥ 5 vials) had higher antivenom reaction risk (aOR: 1.8, 95% CI: 1.23-2.76). A positive skin test result was also associated with antivenom reaction (aOR: 16.7, 95% CI: 5.42-51.22). The skin test showed high specificity (98.5%, 95% CI: 97.49%-99.83%) but low sensitivity (17.5%, 95% CI: 10.74%-24.18%). The antivenom skin test should be abolished because of the extremely low sensitivity and possible misinterpretation of results because of the limitation of this examination.


Assuntos
Antivenenos/efeitos adversos , Mordeduras de Serpentes/terapia , Venenos de Serpentes/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Testes Cutâneos
17.
J Chin Med Assoc ; 80(12): 766-773, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28969991

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) overexpressed in colorectal cancer (CRC) is a tumor target for developing the anti-tumor theranostic agents. Cetuximab, an anti-EGFR monoclonal antibody against EGFR-positive tumors, inhibits cell proliferation and growth was labeled with radioactive 111indium (111In) in this study for diagnosing EGFR-positive CRC. The aim of this study was to evaluate the efficacy of noninvasive nuclear imaging agent 111In-cetuximab and investigate the biological distribution of 111In-cetuximab in the HCT-15-induced EGFR-positive CRC tumor xenografts. METHODS: We conjugated cetuximab with an isotope chelator, diethylene triamine penta acetic acid (DTPA), and consequently labeled cetuximab-DTPA with 111In and measured the labeling efficacy by an instant thin layer chromatography (iTLC). Furthermore, the 111In-cetuximab was investigated and compared for imaging small (50 mm3) and large (250 mm3) tumor of CRC xenografts, respectively. RESULTS: The conjugated ratio between cetuximab and DTPA was 1:6 measured by MALDI-TOF-MS. The better labeling concentration of cetuximab with 10 mCi of 111In was calculated and experimented as 48 µg, resulting in labeling efficacy >80% detected by iTLC. The results revealed that the 111In-cetuximab accumulated in the both sizes of tumors as a reliable noninvasive diagnostic agent, whereas the ratio of tumor to muscle in the large tumor was 7.5-fold. The biodistribution data indicated that the 111In-cetuximab bound to tumor specifically that was higher than that in other organs. CONCLUSION: We suggested that the 111In-cetuximab was potential for early diagnosis and prognostic monitor of EGFR-positive CRC in further clinical practice.


Assuntos
Cetuximab/metabolismo , Neoplasias Colorretais/diagnóstico por imagem , Receptores ErbB/análise , Radioisótopos de Índio , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/química , Humanos , Masculino , Camundongos , Distribuição Tecidual
18.
Sci Rep ; 6: 38695, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941910

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA), a common recreational drug, is known to cause serotonergic neurotoxicity in the brain. Dextromethorphan (DM) is a widely used antitussive reported to exert anti-inflammatory effect in vivo. In this study, we examined the long-term effect of MDMA on the primate serotonergic system and the protective property of DM against MDMA-induced serotonergic abnormality using single photon emission computed tomography (SPECT). Nine monkeys (Macaca cyclopis) were divided into three groups, namely control, MDMA and co-treatment (MDMA/DM). [123I]-ADAM was used as the radioligand for serotonin transporters (SERT) in SPECT scans. SERT levels of the brain were evaluated and presented as the uptake ratios (URs) of [123I]-ADAM in several regions of interest of the brain including midbrain, thalamus and striatum. We found that the URs of [123I]-ADAM were significantly lower in the brains of MDMA than control group, indicating lower brain SERT levels in the MDMA-treated monkeys. This MDMA-induced decrease in brain SERT levels could persist for over four years. However, the loss of brain SERT levels was not observed in co-treatment group. These results suggest that DM may exert a protective effect against MDMA-induced serotonergic toxicity in the brains of the non-human primate.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cinanserina/análogos & derivados , Dextrometorfano/farmacologia , Serotonina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Radioisótopos do Iodo , Imageamento por Ressonância Magnética , N-Metil-3,4-Metilenodioxianfetamina , Primatas , Fatores de Tempo , Tomografia Computadorizada de Emissão de Fóton Único
19.
PLoS One ; 10(9): e0138431, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26378923

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA), also known as "Ecstasy", is a common recreational drug of abuse. Several previous studies have attributed the central serotonergic neurotoxicity of MDMA to distal axotomy, since only fine serotonergic axons ascending from the raphe nucleus are lost without apparent damage to their cell bodies. However, this axotomy has never been visualized directly in vivo. The present study examined the axonal integrity of the efferent projections from the midbrain raphe nucleus after MDMA exposure using in vivo manganese-enhanced magnetic resonance imaging (MEMRI). Rats were injected subcutaneously six times with MDMA (5 mg/kg) or saline once daily. Eight days after the last injection, manganese ions (Mn2+) were injected stereotactically into the raphe nucleus, and a series of MEMRI images was acquired over a period of 38 h to monitor the evolution of Mn2+-induced signal enhancement across the ventral tegmental area, the medial forebrain bundle (MFB), and the striatum. The MDMA-induced loss of serotonin transporters was clearly evidenced by immunohistological staining consistent with the Mn2+-induced signal enhancement observed across the MFB and striatum. MEMRI successfully revealed the disruption of the serotonergic raphe-striatal projections and the variable effect of MDMA on the kinetics of Mn2+ accumulation in the MFB and striatum.


Assuntos
Núcleo Dorsal da Rafe/efeitos dos fármacos , Manganês/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Prosencéfalo/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axotomia/métodos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Síndromes Neurotóxicas/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
20.
Int J Radiat Biol ; 90(10): 841-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24708166

RESUMO

UNLABELLED: Abstract Purpose: The radioprotective effects of Antrodia cinnamomea (AC) were investigated for understanding the potential usefulness of AC as an adjunct treatment for reducing radiation side-effects. MATERIALS AND METHODS: In this study, we determined the ability of AC extracts (AC539) to reduce radiation side-effects by analyzing cellular viability in normal mouse spleen immune cells and human cancer cells with different radiosensitivity. We further detected the effect of AC on radiation-induced changes in cytokine- and inflammatory-related gene expressions. Furthermore, apoptosis assay was performed to determine whether AC could inhibit radiation-induced cytotoxicity. RESULTS: We found that an AC dose of 100-150 µg/ml in a time-dependent manner was the most effective in blocking radiation-induced cytotoxicity, in vitro. Radiation-induced cytotoxicity was inhibited in spleen immune cells by 37-56%; however, pretreatment of human colorectal cancer cell line HT-29 with AC did not have any effect on radiation-induced cytotoxicity, while pretreatment of radiosensitive human breast cancer cell lines BT-474 with AC caused a moderate enhancement of radiation-induced damage. Furthermore, AC pretreatment differentially regulated the mRNA expression of several important immunomodulatory genes in response to irradiation in normal and cancer cells. CONCLUSIONS: Our data indicate that AC may inhibit important immunoregulatory signaling which could be vital in the avoidance of an over-activated cytotoxic and inflammatory response of the immune system caused by radiation-induced tissue damage. Additionally, AC does not provide a radioprotective effect to tumor cells but instead enhances radiation-induced inflammation and cytotoxicity in cancer.


Assuntos
Antrodia/química , Apoptose/imunologia , Leucócitos/imunologia , Neoplasias Experimentais/imunologia , Tolerância a Radiação/efeitos dos fármacos , Protetores contra Radiação/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Citocinas/imunologia , Relação Dose-Resposta a Droga , Células HT29 , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA