Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 30(38): 11421-7, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25168862

RESUMO

The structures of C- and N-terminally monoPEGylated human parathyroid hormone fragment hPTH(1-34) as well as their unmodified counterparts, poly(ethylene glycol) (PEG) and hPTH(1-34), have been studied by small-angle neutron scattering (SANS). The scattering results show that free hPTH(1-34) in 100 mM phosphate buffer (pH 7.4) aggregates into clusters. After conjugation with PEG, the PEG-peptide conjugates self-assemble into a supramolecular core-shell structure with a cylindrical shape. The PEG chains form a shell around the hPTH(1-34) core to shield hPTH(1-34) from the solvent. The detailed structural information on the self-assembled structures is extracted from SANS using a model of the cylindrical core with a shell of Gaussian chains attached to the core surface. On the basis of the data, because of the charge-dipole interactions between the conjugated PEG chain and the peptide, the conjugated PEG chain forms a more collapsed conformation compared to free PEG. Moreover, the size of the self-assembled structures formed by the C-terminally monoPEGylated hPTH(1-34) is about 3 times larger than that of the N-terminally monoPEGylated hPTH(1-34). The different aggregation numbers of the self-assembled structures, triggered by different PEGylation sites, are reported. These size discrepancies because of different PEGylation sites could potentially affect the pharmacokinetics of the hPTH(1-34) drug.


Assuntos
Polietilenoglicóis/química , Teriparatida/química , Humanos , Estrutura Molecular
2.
Anal Bioanal Chem ; 404(8): 2437-44, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22945556

RESUMO

In this study, the relationship of the structural stability of peptide diastereomers in elution solvents and their retention behaviors in reversed-phase chromatography (RPC) was examined to provide guidance on the solvent selection for a better separation of peptide diastereomers. We investigated the chromatographic retention behaviors of exenatide, a peptide drug for the treatment of type II diabetes mellitus and its three diastereomers using RPC and implicit molecular dynamics (MD) simulation analysis. Three diastereomers involved in the single serine residue mutation of D-form at the 11th, 32nd, and 39th residues were investigated in this study. Results show that the order of the solution structural stability of exenatide and its diastereomers is consistent with their retention order by 36 % acetonitrile/water elution. The sample loading solvent also affects the retention behaviors of exenatide peptide diastereomers in RPC column. Furthermore, a larger solution conformation energy difference of the critical pair of exenatide and its diastereomer (D-Ser39) at the elution solvent of 32 % tetrahydrofuran/water were obtained by MD simulation, and baseline separation was proved experimentally. In summary, we demonstrated that the solution structural stability-chromatographic retention relationship could be a powerful tool for elution solvent selection in peptide chromatographic purification, especially valuable for the separation of critical pair of diastereomers.


Assuntos
Peptídeos/química , Peçonhas/química , Sequência de Aminoácidos , Cromatografia de Fase Reversa , Dicroísmo Circular , Estabilidade de Medicamentos , Exenatida , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptídeos/análise , Peptídeos/genética , Estereoisomerismo , Peçonhas/análise , Peçonhas/genética , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA