Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
FEBS Lett ; 596(17): 2243-2255, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35695093

RESUMO

Cytokinesis in plants is fundamentally different from that in animals and fungi. In plant cells, a cell plate forms through the fusion of cytokinetic vesicles and then develops into the new cell wall, partitioning the cytoplasm of the dividing cell. The formation of the cell plate entails multiple stages that involve highly orchestrated vesicle accumulation, fusion and membrane maturation, which occur concurrently with the timely deposition of polysaccharides such as callose, cellulose and cross-linking glycans. This review summarizes the major stages in cytokinesis, endomembrane components involved in cell plate assembly and its transition to a new cell wall. An animation that can be widely used for educational purposes further summarizes the process.


Assuntos
Parede Celular , Citocinese , Parede Celular/metabolismo , Citoplasma/metabolismo , Células Vegetais/metabolismo , Plantas/genética , Plantas/metabolismo , Polissacarídeos/metabolismo
2.
Curr Opin Plant Biol ; 68: 102223, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567926

RESUMO

The endomembrane system is critical for plant growth and development and understanding its function and regulation is of great interest for plant biology research. Small-molecule targeting distinctive endomembrane components have proven powerful tools to dissect membrane trafficking in plant cells. However, unambiguous elucidation of the complex and dynamic trafficking processes requires chemical probes with enhanced precision. Determination of the mechanism of action of a compound, which is facilitated by various chemoproteomic approaches, opens new avenues for the improvement of its specificity. Moreover, rational molecule design and reverse chemical genetics with the aid of virtual screening and artificial intelligence will enable us to discover highly precise chemical probes more efficiently. The next decade will witness the emergence of more such accurate tools, which together with advanced live quantitative imaging techniques of subcellular phenotypes, will deepen our insights into the plant endomembrane system.


Assuntos
Inteligência Artificial , Células Vegetais , Fenótipo , Plantas/metabolismo , Transporte Proteico/fisiologia
3.
Plant Cell ; 34(1): 333-350, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34534343

RESUMO

Coat Protein complex II (COPII), a coat protein complex that forms vesicles on the endoplasmic reticulum (ER), mediates trafficking to the Golgi. While metazoans have few genes encoding each COPII component, plants have expanded these gene families, leading to the hypothesis that plant COPII has functionally diversified. In the moss Physcomitrium (Physcomitrella) patens, the Sec23/24 gene families are each composed of seven genes. Silencing Sec23/24 revealed isoform-specific contributions to polarized growth, with the closely related Sec23D/E and Sec24C/D essential for protonemal development. Focusing on Sec23, we discovered that Sec23D/E mediate ER-to Golgi transport and are essential for tip growth, with Sec23D localizing to presumptive ER exit sites. In contrast, Sec23A, B, C, F, and G are dispensable and do not quantitatively affect ER-to-Golgi trafficking. However, Δsec23abcfg plants exhibited reduced secretion of plasma membrane cargo. Of the four highly expressed protonemal Sec23 genes, Sec23F/G are members of a divergent Sec23 clade specifically retained in land plants. Notably, Sec23G accumulates on ER-associated foci that are significantly larger, do not overlap with, and are independent of Sec23D. While Sec23D/E form ER exit sites and function as bona fide COPII components essential for tip-growing protonemata, Sec23G and the closely related Sec23F have likely functionally diversified, forming separate and independent ER exit sites and participating in Golgi-independent trafficking pathways.


Assuntos
Bryopsida/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Plantas/genética , Proteínas de Transporte Vesicular/genética , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
4.
Front Plant Sci ; 11: 595055, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469461

RESUMO

The intensive use of groundwater in agriculture under the current climate conditions leads to acceleration of soil salinization. Given that almond is a salt-sensitive crop, selection of salt-tolerant rootstocks can help maintain productivity under salinity stress. Selection for tolerant rootstocks at an early growth stage can reduce the investment of time and resources. However, salinity-sensitive markers and salinity tolerance mechanisms of almond species to assist this selection process are largely unknown. We established a microscopy-based approach to investigate mechanisms of stress tolerance in and identified cellular, root anatomical, and molecular traits associated with rootstocks exhibiting salt tolerance. We characterized three almond rootstocks: Empyrean-1 (E1), Controller-5 (C5), and Krymsk-86 (K86). Based on cellular and molecular evidence, our results show that E1 has a higher capacity for salt exclusion by a combination of upregulating ion transporter expression and enhanced deposition of suberin and lignin in the root apoplastic barriers, exodermis, and endodermis, in response to salt stress. Expression analyses revealed differential regulation of cation transporters, stress signaling, and biopolymer synthesis genes in the different rootstocks. This foundational study reveals the mechanisms of salinity tolerance in almond rootstocks from cellular and structural perspectives across a root developmental gradient and provides insights for future screens targeting stress response.

5.
Plant Direct ; 3(9): e00168, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31523744

RESUMO

CRISPR-Cas9 has been shown to be a valuable tool in recent years, allowing researchers to precisely edit the genome using an RNA-guided nuclease to initiate double-strand breaks. Until recently, classical RAD51-mediated homologous recombination has been a powerful tool for gene targeting in the moss Physcomitrella patens. However, CRISPR-Cas9-mediated genome editing in P. patens was shown to be more efficient than traditional homologous recombination (Plant Biotechnology Journal, 15, 2017, 122). CRISPR-Cas9 provides the opportunity to efficiently edit the genome at multiple loci as well as integrate sequences at precise locations in the genome using a simple transient transformation. To fully take advantage of CRISPR-Cas9 genome editing in P. patens, here we describe the generation and use of a flexible and modular CRISPR-Cas9 vector system. Without the need for gene synthesis, this vector system enables editing of up to 12 loci simultaneously. Using this system, we generated multiple lines that had null alleles at four distant loci. We also found that targeting multiple sites within a single locus can produce larger deletions, but the success of this depends on individual protospacers. To take advantage of homology-directed repair, we developed modular vectors to rapidly generate DNA donor plasmids to efficiently introduce DNA sequences encoding for fluorescent proteins at the 5' and 3' ends of gene coding regions. With regard to homology-directed repair experiments, we found that if the protospacer sequence remains on the DNA donor plasmid, then Cas9 cleaves the plasmid target as well as the genomic target. This can reduce the efficiency of introducing sequences into the genome. Furthermore, to ensure the generation of a null allele near the Cas9 cleavage site, we generated a homology plasmid harboring a "stop codon cassette" with downstream near-effortless genotyping.

6.
J Cell Biol ; 217(3): 945-957, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29374070

RESUMO

Exocytosis, facilitated by the exocyst, is fundamentally important for remodeling cell walls and membranes. Here, we analyzed For1F, a novel gene that encodes a fusion of an exocyst subunit (Sec10) and an actin nucleation factor (formin). We showed that the fusion occurred early in moss evolution and has been retained for more than 170 million years. In Physcomitrella patens, For1F is essential, and the expressed protein is a fusion of Sec10 and formin. Reduction of For1F or actin filaments inhibits exocytosis, and For1F dynamically associates with Sec6, another exocyst subunit, in an actin-dependent manner. Complementation experiments demonstrate that constitutive expression of either half of the gene or the paralogous Sec10b rescues loss of For1F, suggesting that fusion of the two domains is not essential, consistent with findings in yeast, where formin and the exocyst are linked noncovalently. Although not essential, the fusion may have had selective advantages and provides a unique opportunity to probe actin regulation of exocytosis.


Assuntos
Actinas/metabolismo , Bryopsida/metabolismo , Evolução Molecular , Exocitose/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Actinas/genética , Bryopsida/genética , Proteínas de Plantas/genética , Proteínas de Transporte Vesicular/genética
7.
Sci Rep ; 5: 11900, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26139146

RESUMO

To study associations between type 2 diabetes (T2DM) candidate genes and microvascular complications of diabetes (MVCDs), we performed case-control association studies for both T2DM and MVCDs in Han Chinese subjects. We recruited 1,939 unrelated Han Chinese T2DM patients and 918 individuals with normal blood glucose levels as nondiabetic controls. Among T2DM patients, 1116 have MVCDs, 266 have a history of T2DM of >10 years but never developed MVCDs. Eighty-two single-nucleotide polymorphisms (SNPs) in 54 candidate genes were genotyped. Discrete association studies were performed by the PLINK program for T2DM and MVCDs. Significant associations were found among candidate gene SNPs and T2DM, including rs1526167 of the TOX gene (allele A, P = 2.85 × 10(-9), OR = 1.44). The SNP rs10811661 of the CDKN2A/B gene was also associated with T2DM (allele T, P = 4.09 × 10(-7), OR = 1.36). When we used control patients with >10 years of T2DM history without MVCD, we found that the G allele of SNP rs1526167 of the TOX gene was associated with MVCD (nominal P = 4.33 × 10(-4)). In our study, significant associations were found between TOX and CDKN2A/B gene SNPs and T2DM. The TOX polymorphism might account for the higher risk of T2DM and the lower risk of MVCDs in the Han Chinese population.


Assuntos
Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/genética , Proteínas de Grupo de Alta Mobilidade/genética , Idoso , Povo Asiático/genética , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/complicações , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
8.
Mol Plant ; 7(8): 1316-1328, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24719465

RESUMO

Although previous studies have demonstrated that endosperm development is influenced by its parental genome constitution, the genetic basis and molecular mechanisms that control parent-of-origin effects require further elucidation. Here we show that the Ras-related nuclear protein 1 (RAN1) regulates endosperm development in Arabidopsis thaliana. Reciprocal crosses between wild-type (WT) and transgenic lines misexpressing RAN1 (msRAN1) gave rise to small F1 seeds when RAN1 down-regulated/up-regulated individuals were used as a male/female parent; in contrast, F1 seeds were aborted when RAN1 down-regulated/up-regulated plants were used as a female/male parent, suggesting that seed development is affected by the parental genome ratio of RAN1. Whereas RAN1 expression in wild-type plants is reduced before the onset of endosperm cellularization, F1 seeds from reciprocal crosses between WT and msRAN1 showed abnormal endosperm cellularization and ectopic expression of RAN1. The expression of MINISEED3 (MINI3)-a gene that also controls endosperm cellularization-was also affected in these reciprocal crosses, and the misregulation of MINI3 activity rescued F1 seeds when msRAN1 plants were used in reciprocal crosses. Taken together, our results suggest that the parental ratio of RAN1 regulates the onset of endosperm cellularization through its genetic interaction with MINI3.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Endosperma/citologia , Alelos , Arabidopsis/citologia , Arabidopsis/metabolismo , Sequência de Bases , Proteínas de Transporte de Cobre , Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Células Germinativas Vegetais/metabolismo , Tamanho do Órgão , Plantas Geneticamente Modificadas , Proteínas de Ligação a RNA , Fatores de Transcrição/genética , Proteína ran de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA