Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Expert Opin Drug Deliv ; 21(1): 169-185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38224039

RESUMO

BACKGROUND: Exendin-4 (Ex4) is a promising drug for diabetes mellitus with a half-life of 2.4 h in human bodies. Besides, the Ex4 formulations currently employed in the clinic or under development have problems pertaining to stability. In this study, palmitic acid-modified Ex4 (Pal-Ex4) was prepared and purified to extend the half-life of Ex4. In addition, Pal-Ex4-MVLs were further designed and optimized as a long-acting delivery system for intramuscular injection. METHODS: Pal-Ex4 was encapsulated within multivesicular liposomes (MVLs) via a two-step double emulsification process. The formulated products were then assessed for their vesicle size, encapsulation efficiency, and in vitro and in vivo. RESULTS: Pal-Ex4-MVLs with a notable encapsulation efficiency of 99.18% were successfully prepared. Pal-Ex4-MVLs, administered via a single intramuscular injection in Sprague-Dawley rats, sustained stable plasma concentrations for 168 h, presenting extended half-life (77.28 ± 12.919 h) and enhanced relative bioavailability (664.18%). MVLs protected Ex4 through providing stable retention and slow release. This approach considerably improved the in-situ stability of the drug for intramuscular administration. CONCLUSIONS: The combination of palmitic acid modification process with MVLs provides dual protection for Ex4 and can be a promising strategy for other hydrophilic protein/polypeptide-loaded sustained-release delivery systems with high drug bioactivity.


Assuntos
Lipossomos , Ácido Palmítico , Ratos , Animais , Humanos , Exenatida , Injeções Intramusculares , Preparações de Ação Retardada , Ratos Sprague-Dawley
2.
AAPS PharmSciTech ; 23(6): 208, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902441

RESUMO

High oil ratio fat emulsion injections are prone to poor emulsification, rapid creaming, and other quality problems; therefore, the selection of emulsifiers with high emulsifying ability is crucial for the production of fat emulsions. The existing methods used to evaluate the emulsifying ability of emulsifier are to evaluate the emulsifying ability from the emulsifier itself. In the study, Langmuir monolayer selected the most miscible phospholipid with oil phase from the alternative three phospholipids by studying the molecular interaction between oil phase and phospholipid at the air/water interface. The miscibility and thermodynamic stability analyses of the different oil phase/phospholipid mixed monolayers were performed, and the data from [Formula: see text] and [Formula: see text] concluded that all three oil phases had the strongest molecular interaction with E80 and the best miscibility. The emulsions were then prepared and analyzed by the results of particle size, ζ-potential, and stability of the emulsions, where the surface free energy in the stability test echoed the results reflected by the [Formula: see text] values in the thermodynamic stability test. These results indicate that Langmuir monolayers can be used to study the interaction between oil phase and emulsifier, thus providing new ideas for evaluating the emulsifying ability of phospholipids.


Assuntos
Emulsificantes , Fosfolipídeos , Emulsões , Tamanho da Partícula , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA