Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600703

RESUMO

Sterols have long been associated with diverse fields, such as cancer treatment, drug development, and plant growth; however, their underlying mechanisms and functions remain enigmatic. Here, we unveil a critical role played by a GmNF-YC9-mediated CCAAT-box transcription complex in modulating the steroid metabolism pathway within soybeans. Specifically, this complex directly activates squalene monooxygenase (GmSQE1), which is a rate-limiting enzyme in steroid synthesis. Our findings demonstrate that overexpression of either GmNF-YC9 or GmSQE1 significantly enhances soybean stress tolerance, while the inhibition of SQE weakens this tolerance. Field experiments conducted over two seasons further reveal increased yields per plant in both GmNF-YC9 and GmSQE1 overexpressing plants under drought stress conditions. This enhanced stress tolerance is attributed to the reduction of abiotic stress-induced cell oxidative damage. Transcriptome and metabolome analyses shed light on the upregulation of multiple sterol compounds, including fucosterol and soyasaponin II, in GmNF-YC9 and GmSQE1 overexpressing soybean plants under stress conditions. Intriguingly, the application of soybean steroids, including fucosterol and soyasaponin II, significantly improves drought tolerance in soybean, wheat, foxtail millet, and maize. These findings underscore the pivotal role of soybean steroids in countering oxidative stress in plants and offer a new research strategy for enhancing crop stress tolerance and quality from gene regulation to chemical intervention.

2.
Cell Death Dis ; 8(3): e2676, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300826

RESUMO

Inflammatory responses involving microglia and astrocytes contribute to the pathogenesis of neurodegenerative diseases (NDs). In addition, inflammation is tightly linked to iron metabolism dysregulation. However, it is not clear whether the brain inflammation-induced iron metabolism dysregulation contributes to the NDs pathogenesis. Herein, we demonstrate that the expression of the systemic iron regulatory hormone, hepcidin, is induced by lipopolysaccharide (LPS) through the IL-6/STAT3 pathway in the cortex and hippocampus. In this paradigm, activated glial cells are the source of IL-6, which was essential in the iron overload-activated apoptosis of neurons. Disrupting astrocyte hepcidin expression prevented the apoptosis of neurons, which were able to maintain levels of FPN1 adequate to avoid iron accumulation. Together, our data are consistent with a model whereby inflammation initiates an intercellular signaling cascade in which activated microglia, through IL-6 signaling, stimulate astrocytes to release hepcidin which, in turn, signals to neurons, via hepcidin, to prevent their iron release. Such a pathway is relevant to NDs in that it links inflammation, microglia and astrocytes to neuronal damage.


Assuntos
Apoptose/efeitos dos fármacos , Astrócitos/metabolismo , Hepcidinas/metabolismo , Lipopolissacarídeos/farmacologia , Neurônios/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Encefalite/metabolismo , Encefalite/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Interleucina-6/metabolismo , Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
J Cell Biochem ; 118(6): 1596-1605, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27925282

RESUMO

Disruption of iron homeostasis in brain has been found to be closely involved in several neurodegenerative diseases. Recent studies have reported that appropriate intermittent hypobaric hypoxia played a protective role in brain injury caused by acute hypoxia. However, the mechanisms of this protective effect have not been fully understood. In this study, Sprague-Dawley (SD) rat models were developed by hypobaric hypoxia treatment in an altitude chamber, and the iron level and iron related protein levels were determined in rat brain after 4 weeks of treatment. We found that the iron levels significantly decreased in the cortex and hippocampus of rat brain as compared to that of the control rats without hypobaric hypoxia treatment. The expression levels of iron storage protein L-ferritin and iron transport proteins, including transferrin receptor-1 (TfR1), divalent metal transporter 1 (DMT1), and ferroportin1 (FPN1), were also altered. Further studies found that the iron regulatory protein 2 (IRP2) played a dominant regulatory role in the changes of iron hemostasis, whereas iron regulatory protein 1 (IRP1) mainly acted as cis-aconitase. These results, for the first time, showed the alteration of iron metabolism during hypobaric hypoxia in rat models, which link the potential neuroprotective role of hypobaric hypoxia treatment to the decreased iron level in brain. This may provide insight into the treatment of iron-overloaded neurodegenerative diseases. J. Cell. Biochem. 118: 1596-1605, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/metabolismo , Hipóxia/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Ferro/metabolismo , Animais , Apoferritinas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Hipóxia Celular , Modelos Animais de Doenças , Homeostase , Masculino , Ratos , Ratos Sprague-Dawley , Receptores da Transferrina/metabolismo
4.
Front Aging Neurosci ; 8: 308, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066232

RESUMO

Ferroptosis, a newly identified form of regulated cell death, is characterized by overwhelming iron-dependent accumulation of lethal lipid reactive oxygen species (ROS). Preventing cellular iron overload by reducing iron uptake and increasing iron storage may contribute to inhibit ferroptosis. Mitochondrial ferritin (FtMt) is an iron-storage protein that is located in the mitochondria, which has a significant role in modulating cellular iron metabolism. Recent studies showed that FtMt played inhibitory effects on oxidative stress-dependent neuronal cell damage. However, the potential role of FtMt in the progress of ferroptosis in neuronal cells has not been studied. To explore this, we established ferroptosis models of cell and drosophila by erastin treatment. We found that overexpression of FtMt in neuroblastoma SH-SY5Y cells significantly inhibited erastin-induced ferroptosis, which very likely was achieved by regulation of iron homeostasis. Upon erastin treatment, significant increases of cellular labile iron pool (LIP) and cytosolic ROS were observed in wild-type SH-SY5Y cells, but not in the FtMt-overexpressed cells. Consistent with that, the alterations of iron-related proteins in FtMt-overexpressed cells were different from that of the control cells. We further investigated the role of FtMt in erastin-induced ferroptosis in transgenic drosophila. We found that the wild-type drosophilas fed an erastin-containing diet didn't survive more than 3 weeks. In contrast, the FtMt overexpressing drosophilas fed the same diet were survival very well. These results indicated that FtMt played a protective role in erastin-induced ferroptosis.

5.
Antioxid Redox Signal ; 18(2): 158-69, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22746342

RESUMO

AIMS: Mitochondrial ferritin (MtFt), which was recently discovered, plays an important role in preventing neuronal damage in 6-hydroxydopamine-induced Parkinsonism by maintaining mitochondrial iron homeostasis. Disruption of iron regulation also plays a key role in the etiology of Alzheimer's disease (AD). To explore the potential neuroprotective roles of MtFt, rats and cells were treated with Aß(25-35) to establish an AD model. RESULTS: We report that knockdown of MtFt expression significantly enhanced Aß(25-35)-induced neurotoxicity as shown by dysregulation of iron homeostasis, enhanced oxidative stress, and increased cell apoptosis. Opposite results were obtained when MtFt was overexpressed in SH-SY5Y cells prior to treatment with Aß(25-35). Further, MtFt inhibited Aß(25-35)-induced P38 mitogen-activated protein kinase and activated extracellular signal-regulated kinase (Erk) signaling. INNOVATION: MtFt attenuated Aß(25-35)-induced neurotoxicity and reduced oxidative damage through Erk/P38 kinase signaling. CONCLUSION: Our results show a protective role of MtFt in AD and suggest that regulation of MtFt expression in neuronal cells may provide a new neuroprotective strategy for AD.


Assuntos
Peptídeos beta-Amiloides/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ferritinas/fisiologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Citocromos c/metabolismo , Ativação Enzimática , Ferritinas/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Malondialdeído/metabolismo , RNA Interferente Pequeno , Ratos , Espécies Reativas de Oxigênio/metabolismo
6.
PLoS One ; 6(9): e25324, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21957487

RESUMO

Oxidative stress plays an important role in neuronal injuries caused by cerebral ischemia. It is well established that free iron increases significantly during ischemia and is responsible for oxidative damage in the brain. However, the mechanism of this ischemia-induced increase in iron is not completely understood. In this report, the middle cerebral artery occlusion (MCAO) rat model was performed and the mechanism of iron accumulation in cerebral ischemia-reperfusion was studied. The expression of L-ferritin was significantly increased in the cerebral cortex, hippocampus, and striatum on the ischemic side, whereas H-ferritin was reduced in the striatum and increased in the cerebral cortex and hippocampus. The expression level of the iron-export protein ferroportin1 (FPN1) significantly decreased, while the expression of transferrin receptor 1 (TfR1) was increased. In order to elucidate the mechanisms of FPN1 regulation, we studied the expression of the key regulator of FPN1, hepcidin. We observed that the hepcidin level was significantly elevated in the ischemic side of the brain. Knockdown hepcidin repressed the increasing of L-ferritin and decreasing of FPN1 invoked by ischemia-reperfusion. The results indicate that hepcidin is an important contributor to iron overload in cerebral ischemia. Furthermore, our results demonstrated that the levels of hypoxia-inducible factor-1α (HIF-1α) were significantly higher in the cerebral cortex, hippocampus and striatum on the ischemic side; therefore, the HIF-1α-mediated TfR1 expression may be another contributor to the iron overload in the ischemia-reperfusion brain.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Ferro/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/deficiência , Peptídeos Catiônicos Antimicrobianos/genética , Encéfalo/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Ferritinas/metabolismo , Técnicas de Silenciamento de Genes , Hepcidinas , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/genética , Interleucina-6/genética , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Camundongos , Ratos , Receptores da Transferrina/metabolismo , Traumatismo por Reperfusão/complicações , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA