Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
2.
Anal Chim Acta ; 1303: 342537, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609272

RESUMO

BACKGROUND: Antibody‒drug conjugates (ADCs) are innovative biopharmaceutics consisting of a monoclonal antibody, linkers, and cytotoxic payloads. Monitoring circulating payload concentrations has the potential to identify ADC toxicity; however, accurate quantification faces challenges, including low plasma concentrations, severe matrix effects, and the absence of stable isotope-labeled internal standards (SIL-IS) for payloads and their derivatives. Previous studies used structural analogs as internal standards, but different retention times between structural analogs and target analytes may hinder effective matrix correction. Therefore, a more flexible approach is required for precise payload quantification. RESULTS: We developed an LC‒MS/MS method incorporating a postcolumn-infused internal standard (PCI-IS) strategy for quantifying payloads and their derivatives of trastuzumab emtansine, trastuzumab deruxtecan, and sacituzumab govitecan, including DM1, MCC-DM1, DXd, SN-38, and SN-38G. Structural analogs (maytansine, Lys-MCC-DM1, and exatecan) were selected as PCI-IS candidates, and their accuracy performance was evaluated based on the percentage of samples within 80%-120% quantification accuracy. Compared to the approach without PCI-IS correction, exatecan enhanced the accuracy performance from 30-40%-100% for SN-38 and DXd, while maytansine and Lys-MCC-DM1 showed comparable accuracy for DM1 and MCC-DM1. This validated PCI-IS analytical method showed superior normalization of matrix effect in all analytes compared to the conventional internal standard approach. The clinical application of this approach showed pronounced differences in DXd and SN-38 concentrations before and after PCI-IS correction. Moreover, only DXd concentrations after PCI-IS correction were significantly higher in patients with thrombocytopenia (p = 0.037). SIGNIFICANCE: This approach effectively addressed the issue of unavailability of SIL-IS for novel ADC payloads and provided more accurate quantification, potentially yielding more robust statistical outcomes for understanding the exposure-toxicity relationship in ADCs. It is anticipated that this PCI-IS strategy may be extrapolated to quantify payloads and derivatives in diverse ADCs, thereby providing invaluable insights into drug toxicity and fortifying patient safety in ADC usage.


Assuntos
Imunoconjugados , Maitansina , Intervenção Coronária Percutânea , Humanos , Irinotecano , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Maitansina/uso terapêutico
3.
Poult Sci ; 103(6): 103741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670055

RESUMO

Fowl adenovirus serotype 4 (FAdV-4) infections result in substantial economic losses in the poultry industry. Recent findings have revealed that FAdV-4 significantly suppresses the host immune response upon infection; however, the specific viral and host factors contributing to this immunomodulatory activity remain poorly characterized. Moreover, diverse cell types exhibit differential immune responses to FAdV-4 infection. To elucidate cell-specific host responses, we performed transcriptomic analysis of FAdV-4 infected leghorn male hepatocellular (LMH) and chicken embryo fibroblast (CEF) cells. Although FAdV-4 replicated more efficiently in LMH cells, it provoked limited interferon-stimulated gene induction. In contrast, FAdV-4 infection triggered robust antiviral responses in CEF cells, including upregulation of cytosolic DNA sensing and interferon-stimulated genes. Knockdown of key cytosolic DNA sensing molecules enhanced FAdV-4 replication in LMH cells while reducing interferon-stimulated gene expression. Our findings reveal cell-specific virus-host interactions that provide insight into FAdV-4 pathogenesis while identifying factors that mediate antiviral immunity against FAdV-4.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Galinhas , Fibroblastos , Imunidade Inata , Doenças das Aves Domésticas , Animais , Masculino , Fibroblastos/virologia , Fibroblastos/imunologia , Embrião de Galinha , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Galinhas/imunologia , Aviadenovirus/fisiologia , Aviadenovirus/imunologia , Sorogrupo , Hepatócitos/virologia , Hepatócitos/imunologia
4.
Front Plant Sci ; 15: 1310346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444537

RESUMO

Wolfberry, also known as goji berry or Lycium barbarum, is a highly valued fruit with significant health benefits and nutritional value. For more efficient and comprehensive usage of published L. barbarum genomic data, we established the Wolfberry database. The utility of the Wolfberry Genome Database (WGDB) is highlighted through the Genome browser, which enables the user to explore the L. barbarum genome, browse specific chromosomes, and access gene sequences. Gene annotation features provide comprehensive information about gene functions, locations, expression profiles, pathway involvement, protein domains, and regulatory transcription factors. The transcriptome feature allows the user to explore gene expression patterns using transcripts per kilobase million (TPM) and fragments per kilobase per million mapped reads (FPKM) metrics. The Metabolism pathway page provides insights into metabolic pathways and the involvement of the selected genes. In addition to the database content, we also introduce six analysis tools developed for the WGDB. These tools offer functionalities for gene function prediction, nucleotide and amino acid BLAST analysis, protein domain analysis, GO annotation, and gene expression pattern analysis. The WGDB is freely accessible at https://cosbi7.ee.ncku.edu.tw/Wolfberry/. Overall, WGDB serves as a valuable resource for researchers interested in the genomics and transcriptomics of L. barbarum. Its user-friendly web interface and comprehensive data facilitate the exploration of gene functions, regulatory mechanisms, and metabolic pathways, ultimately contributing to a deeper understanding of wolfberry and its potential applications in agronomy and nutrition.

5.
J Virol ; 98(3): e0151223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38415626

RESUMO

H9N2 avian influenza is a low-pathogenic avian influenza circulating in poultry and wild birds worldwide and frequently contributes to chicken salpingitis that is caused by avian pathogenic Escherichia coli (APEC), leading to huge economic losses and risks for food safety. Currently, how the H9N2 virus contributes to APEC infection and facilitates salpingitis remains elusive. In this study, in vitro chicken oviduct epithelial cell (COEC) model and in vivo studies were performed to investigate the role of H9N2 viruses on secondary APEC infection, and we identified that H9N2 virus enhances APEC infection both in vitro and in vivo. To understand the mechanisms behind this phenomenon, adhesive molecules on the cell surface facilitating APEC adhesion were checked, and we found that H9N2 virus could upregulate the expression of fibronectin, which promotes APEC adhesion onto COECs. We further investigated how fibronectin expression is regulated by H9N2 virus infection and revealed that transforming growth factor beta (TGF-ß) signaling pathway is activated by the NS1 protein of the virus, thus regulating the expression of adhesive molecules. These new findings revealed the role of H9N2 virus in salpingitis co-infected with APEC and discovered the molecular mechanisms by which the H9N2 virus facilitates APEC infection, offering new insights to the etiology of salpingitis with viral-bacterial co-infections.IMPORTANCEH9N2 avian influenza virus (AIV) widely infects poultry and is sporadically reported in human infections. The infection in birds frequently causes secondary bacterial infections, resulting in severe symptoms like pneumonia and salpingitis. Currently, the mechanism that influenza A virus contributes to secondary bacterial infection remains elusive. Here we discovered that H9N2 virus infection promotes APEC infection and further explored the underlying molecular mechanisms. We found that fibronectin protein on the cell surface is vital for APEC adhesion and also showed that H9N2 viral protein NS1 increased the expression of fibronectin by activating the TGF-ß signaling pathway. Our findings offer new information on how AIV infection promotes APEC secondary infection, providing potential targets for mitigating severe APEC infections induced by H9N2 avian influenza, and also give new insights on the mechanisms on how viruses promote secondary bacterial infections in animal and human diseases.


Assuntos
Infecções por Escherichia coli , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Salpingite , Animais , Feminino , Humanos , Galinhas , Escherichia coli , Fibronectinas/metabolismo , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/complicações , Oviductos/metabolismo , Aves Domésticas , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/virologia , Salpingite/metabolismo , Salpingite/veterinária , Salpingite/virologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Virais/metabolismo , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/veterinária
6.
Nucleic Acids Res ; 52(D1): D1569-D1578, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897338

RESUMO

PlantPAN 4.0 (http://PlantPAN.itps.ncku.edu.tw/) is an integrative resource for constructing transcriptional regulatory networks for diverse plant species. In this release, the gene annotation and promoter sequences were expanded to cover 115 species. PlantPAN 4.0 can help users characterize the evolutionary differences and similarities among cis-regulatory elements; furthermore, this system can now help in identification of conserved non-coding sequences among homologous genes. The updated transcription factor binding site repository contains 3428 nonredundant matrices for 18305 transcription factors; this expansion helps in exploration of combinational and nucleotide variants of cis-regulatory elements in conserved non-coding sequences. Additionally, the genomic landscapes of regulatory factors were manually updated, and ChIP-seq data sets derived from a single-cell green alga (Chlamydomonas reinhardtii) were added. Furthermore, the statistical review and graphical analysis components were improved to offer intelligible information through ChIP-seq data analysis. These improvements included easy-to-read experimental condition clusters, searchable gene-centered interfaces for the identification of promoter regions' binding preferences by considering experimental condition clusters and peak visualization for all regulatory factors, and the 20 most significantly enriched gene ontology functions for regulatory factors. Thus, PlantPAN 4.0 can effectively reconstruct gene regulatory networks and help compare genomic cis-regulatory elements across plant species and experiments.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Plantas , Regiões Promotoras Genéticas , Redes Reguladoras de Genes , Plantas/genética , Ligação Proteica
7.
ACS Appl Mater Interfaces ; 15(28): 33373-33381, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37395349

RESUMO

The current standard of care for colon cancer surveillance relies heavily on white light endoscopy (WLE). However, dysplastic lesions that are not visible to the naked eye are often missed when conventional WLE equipment is used. Although dye-based chromoendoscopy shows promise, current dyes cannot delineate tumor tissues from surrounding healthy tissues accurately. The goal of the present study was to screen various phthalocyanine (PC) dye-loaded micelles for their ability to improve the direct visualization of tumor tissues under white light following intravenous administration. Zinc PC (tetra-tert-butyl)-loaded micelles were identified as the optimal formulation. Their accumulation within syngeneic breast tumors led the tumors to turn dark blue in color, making them clearly visible to the naked eye. These micelles were similarly able to turn spontaneous colorectal adenomas in Apc+/Min mice a dark blue color for easy identification and could enable clinicians to more effectively detect and remove colonic polyps.


Assuntos
Neoplasias , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Luz , Corantes/química , Micelas , Masculino , Animais , Camundongos , Humanos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral
8.
J Exp Bot ; 74(17): 4949-4958, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37523674

RESUMO

Long noncoding RNAs (lncRNAs) are regulatory RNAs involved in numerous biological processes. Many plant lncRNAs have been identified, but their regulatory mechanisms remain largely unknown. A resource that enables the investigation of lncRNA activity under various conditions is required because the co-expression between lncRNAs and protein-coding genes may reveal the effects of lncRNAs. This study developed JustRNA, an expression profiling resource for plant lncRNAs. The platform currently contains 1 088 565 lncRNA annotations for 80 plant species. In addition, it includes 3692 RNA-seq samples derived from 825 conditions in six model plants. Functional network reconstruction provides insight into the regulatory roles of lncRNAs. Genomic association analysis and microRNA target prediction can be employed to depict potential interactions with nearby genes and microRNAs, respectively. Subsequent co-expression analysis can be employed to strengthen confidence in the interactions among genes. Chromatin immunoprecipitation sequencing data of transcription factors and histone modifications were integrated into the JustRNA platform to identify the transcriptional regulation of lncRNAs in several plant species. The JustRNA platform provides researchers with valuable insight into the regulatory mechanisms of plant lncRNAs. JustRNA is a free platform that can be accessed at http://JustRNA.itps.ncku.edu.tw.


Assuntos
MicroRNAs , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , RNA de Plantas/genética
9.
Cancers (Basel) ; 15(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37296911

RESUMO

PURPOSE: The purpose of this study was to assess the effect of folic acid (FA) supplementation on colitis-associated colorectal cancer (CRC) using the azoxymethane/dextran sulfate sodium (AOM/DSS) model. METHODS: Mice were fed a chow containing 2 mg/kg FA at baseline and randomized after the first DSS treatment to receive 0, 2, or 8 mg/kg FA chow for 16 weeks. Colon tissue was collected for histopathological evaluation, genome-wide methylation analyses (Digital Restriction Enzyme Assay of Methylation), and gene expression profiling (RNA-Seq). RESULTS: A dose-dependent increase in the multiplicity of colonic dysplasias was observed, with the multiplicity of total and polypoid dysplasias higher (64% and 225%, respectively) in the 8 mg FA vs. the 0 mg FA group (p < 0.001). Polypoid dysplasias were hypomethylated, as compared to the non-neoplastic colonic mucosa (p < 0.05), irrespective of FA treatment. The colonic mucosa of the 8 mg FA group was markedly hypomethylated as compared to the 0 mg FA group. Differential methylation of genes involved in Wnt/ß-catenin and MAPK signaling resulted in corresponding alterations in gene expression within the colonic mucosa. CONCLUSIONS: High-dose FA created an altered epigenetic field effect within the non-neoplastic colonic mucosa. The observed decrease in site-specific DNA methylation altered oncogenic pathways and promoted colitis-associated CRC.

10.
Comput Struct Biotechnol J ; 21: 2147-2159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013004

RESUMO

In eukaryotes, dynamic regulation enables DNA polymerases to catalyze a variety of RNA products in spatial and temporal patterns. Dynamic gene expression is regulated by transcription factors (TFs) and epigenetics (DNA methylation and histone modification). The applications of biochemical technology and high-throughput sequencing enhance the understanding of mechanisms of these regulations and affected genomic regions. To provide a searchable platform for retrieving such metadata, numerous databases have been developed based on the integration of genome-wide maps (e.g., ChIP-seq, whole-genome bisulfite sequencing, RNA-seq, ATAC-seq, DNase-seq, and MNase-seq data) and functionally genomic annotation. In this mini review, we summarize the main functions of TF-related databases and outline the prevalent approaches used in inferring epigenetic regulations, their associated genes, and functions. We review the literature on crosstalk between TF and epigenetic regulation and the properties of non-coding RNA regulation, which are challenging topics that promise to pave the way for advances in database development.

11.
Vet Res ; 54(1): 24, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918926

RESUMO

Hepatitis-hydropericardium syndrome (HHS) induced by fowl adenovirus serotype-4 (FAdV-4) has caused large economic losses to the world poultry industry in recent years. HHS is characterized by pericardial effusion and hepatitis, manifesting as a swollen liver with focal necroses and petechial haemorrhage. However, the process of FAdV-4 entry into hepatic cells remains largely unknown. In this paper, we present a comprehensive study on the entry mechanism of FAdV-4 into leghorn male hepatocellular (LMH) cells. We first observed that FAdV-4 internalization was inhibited by chlorpromazine and clathrin heavy chain (CHC) knockdown, suggesting that FAdV-4 entry into LMH cells depended on clathrin. By using the inhibitor dynasore, we showed that dynamin was required for FAdV-4 entry. In addition, we found that FAdV-4 entry was dependent on membrane cholesterol, while neither the knockdown of caveolin nor the inhibition of a tyrosine kinase-based signalling cascade affected FAdV-4 infection. These results suggested that FAdV-4 entry required cholesterol but not caveolae. We also found that macropinocytosis played a role, and phosphatidylinositol 3-kinase (PI3K) was required for FAdV-4 internalization. However, inhibitors of endosomal acidification did not prevent FAdV-4 entry. Taken together, our findings demonstrate that FAdV-4 enters LMH cells through dynamin- and cholesterol-dependent clathrin-mediated endocytosis, accompanied by the involvement of macropinocytosis requiring PI3K. Our work potentially provides insight into the entry mechanisms of other avian adenoviruses.


Assuntos
Infecções por Adenoviridae , Carcinoma Hepatocelular , Neoplasias Hepáticas , Doenças das Aves Domésticas , Masculino , Animais , Galinhas/metabolismo , Carcinoma Hepatocelular/veterinária , Sorogrupo , Fosfatidilinositol 3-Quinases , Neoplasias Hepáticas/veterinária , Adenoviridae/metabolismo , Endocitose , Dinaminas/metabolismo , Clatrina/metabolismo , Colesterol , Infecções por Adenoviridae/veterinária
12.
Gastroenterology ; 164(6): 921-936.e1, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764492

RESUMO

BACKGROUND & AIMS: Aberrant DNA methylation is frequent in colorectal cancer (CRC), but underlying mechanisms and pathologic consequences are poorly understood. METHODS: We disrupted active DNA demethylation genes Tet1 and/or Tdg from ApcMin mice and characterized the methylome and transcriptome of colonic adenomas. Data were compared to human colonic adenocarcinomas (COAD) in The Cancer Genome Atlas. RESULTS: There were increased numbers of small intestinal adenomas in ApcMin mice expressing the TdgN151A allele, whereas Tet1-deficient and Tet1/TdgN151A-double heterozygous ApcMin colonic adenomas were larger with features of erosion and invasion. We detected reduction in global DNA hypomethylation in colonic adenomas from Tet1- and Tdg-mutant ApcMin mice and hypermethylation of CpG islands in Tet1-mutant ApcMin adenomas. Up-regulation of inflammatory, immune, and interferon response genes was present in Tet1- and Tdg-mutant colonic adenomas compared to control ApcMin adenomas. This up-regulation was also seen in murine colonic organoids and human CRC lines infected with lentiviruses expressing TET1 or TDG short hairpin RNA. A 127-gene inflammatory signature separated colonic adenocarcinomas into 4 groups, closely aligned with their microsatellite or chromosomal instability and characterized by different levels of DNA methylation and DNMT1 expression that anticorrelated with TET1 expression. Tumors with the CpG island methylator phenotype (CIMP) had concerted high DNMT1/low TET1 expression. TET1 or TDG knockdown in CRC lines enhanced killing by natural killer cells. CONCLUSIONS: Our findings reveal a novel epigenetic regulation, linked to the type of genomic instability, by which TET1/TDG-mediated DNA demethylation decreases methylation levels and inflammatory/interferon/immune responses. CIMP in CRC is triggered by an imbalance of methylating activities over demethylating activities. These mice represent a model of CIMP CRC.


Assuntos
Adenocarcinoma , Adenoma , Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenoma/genética , Adenoma/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Epigênese Genética , Oxigenases de Função Mista/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética
13.
Methods Mol Biol ; 2594: 173-183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36264496

RESUMO

Reconstruction of gene regulatory networks is a very important but difficult issue in plant sciences. Recently, numerous high-throughput techniques, such as chromatin immunoprecipitation sequencing (ChIP-seq) and DNA affinity purification sequencing (DAP-seq), have been developed to identify the genomic binding landscapes of regulatory factors. To understand the relationships among transcription factors (TFs) and their corresponding binding sites on target genes is usually the first step for elucidating gene regulatory mechanisms. Therefore, a good database for plant TFs and transcription factor binding sites (TFBSs) will be useful for starting a series of complex experiments. In this chapter, PlantPAN (version 3.0) is utilized as an example to explain how bioinformatics systems advance research on gene regulation.


Assuntos
Plantas , Fatores de Transcrição , Sítios de Ligação , Ligação Proteica , Plantas/genética , Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/metabolismo
14.
Vet Microbiol ; 276: 109617, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36469999

RESUMO

ß-catenin is a key component of the Wnt/ß-catenin signal transduction cascade which is a highly conserved signaling pathway in eukaryotes. Increasing evidence suggests that the Wnt/ß-catenin signaling pathway is involved in the infection of many viruses. However, its role in fowl adenovirus serotype 4 (FAdV-4) replication remains unclear. In the present study, we showed that FAdV-4 infection increased the expression of ß-catenin and promoted the nuclear translocation of ß-catenin. Overexpression of ß-catenin and LiCl treatment stimulated the accumulation of ß-catenin in the nucleus, and then facilitated FAdV-4 replication. Conversely, repression of ß-catenin by inhibitors and siRNA significantly inhibited FAdV-4 replication. Furthermore, inhibition of autophagy by 3-Methyladenine (3-MA) suppressed the FAdV-4 replication, and repression of ß-catenin inhibited the FAdV-4-triggered autophagy. In conclusion, the nuclear translocation of ß-catenin benefits FAdV-4 replication, and suppression of ß-catenin limits FAdV-4 production by inhibiting FAdV-4-induced autophagy. These findings indicated that ß-catenin is an important regulator of FAdV-4 replication which can serve as a potential target for anti-FAdV-4 agents.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves Domésticas , Animais , Sorogrupo , beta Catenina/genética , beta Catenina/metabolismo , Galinhas , Adenoviridae/genética , Infecções por Adenoviridae/veterinária , Via de Sinalização Wnt , Autofagia , Aviadenovirus/fisiologia
15.
Front Microbiol ; 14: 1335658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264482

RESUMO

Mycoplasma synoviae (M. synoviae) is one of the major poultry pathogens causing infectious synovitis, airsacculitis, a high incidence of shell breakage, and egg production loss. However, the pathogenesis of M. synoviae remains unclear. Adhesion of mycoplasmas to host cells is a crucial step in infection and colonization. The purpose of this study was to determine the adhesive function of a putative P80 family lipoprotein (LP78) and evaluate its application in the detection of antibodies against M. synoviae. Recombinant LP78 (rLP78) was expressed in the supernatant component of Escherichia coli and mouse anti-rLP78 serum was prepared. Bioinformatic analysis and western blotting results revealed that LP78 was conservative among M. synoviae strains. It was distributed not only in the cytoplasm but also on the membrane of M. synoviae through western blotting and indirect immunofluorescence (IFA). The adherence of M. synoviae to DF-1 cells was significantly inhibited by mouse anti-rLP78 serum (p < 0.01). IFA revealed that rLP78 adhered to DF-1 cells, and this adherence was prevented by mouse anti-rLP78 serum. Furthermore, rLP78 was found to bind to the DF-1 cells membrane proteins in a dose-dependent manner by enzyme-linked immunosorbent assay (ELISA). Screening of DF-1 cells membrane proteins by western blotting showed that proteins with molecular weight of 35-40 kDa and 55-70 kDa bound to rLP78. Moreover, rLP78 was identified to be a fibronectin/plasminogen binding protein. The sensitivity and specificity of rLP78-based iELISA were 85.7 and 94.1%, respectively. The maximum dilution of positive serum (HI titer, 1:128) detected via rLP78-based iELISA was 1:6,400, whereas that detected using a commercial ELISA kit was 1:12,800-1:25,600. Both rLP78-based iELISA and the commercial ELISA kit detected seroconversion after 7 days of challenge and immunization. No cross-reactivity with positive sera against other avian pathogens was observed in rLP78-based iELISA. Collectively, these results indicate that LP78 is a fibronectin/plasminogen-binding adhesion protein of M. synoviae and a potential diagnostic antigen. The present study will facilitate a better understanding of the pathogenesis of M. synoviae and the development of new diagnostic.

16.
Front Vet Sci ; 10: 1334638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239753

RESUMO

Mycoplasma synoviae (MS) is a primary avian pathogen prevalent worldwide that causes airsacculitis and synovitis in birds. Vaccination is recommended as the most cost-effective strategy in the control of MS infection. Novel alternative vaccines are needed for eradicating and controlling MS infection in flocks. DnaK, enolase, elongation factor Tu (EF-Tu), MSPB, NADH oxidase and LP78 are the major immunogenic antigens of MS and are promising targets for subunit vaccine candidates. In the present study, genes encoding DnaK, enolase, EF-Tu, MSPB, LP78, and NADH oxidase were cloned and expressed in Escherichia coli. Enzyme-linked immunosorbent assay showed that the six recombinant proteins were recognized by convalescent sera, indicating that they were expressed during infection. Two injections of the six subunit vaccines induced a robust antibody response and increased the concentrations of IFN-γ and IL-4, especially rEnolase and rEF-Tu. The proliferation of peripheral blood lymphocytes was enhanced in all of the immunized groups. Chickens immunized with rEnolase, rEF-Tu, rLP78, and rMSPB conferred significant protection against MS infection, as indicated by significantly lower DNA copies in the trachea, lower scores of air sac lesions, and lesser tracheal mucosal thickness than that in the challenge control. Especially, rEnolase provided the best protective efficacy, followed by rEF-Tu, rMSPB, and rLP78. Our finds demonstrate that the subunit vaccines and bacterin can only reduce the lesions caused by MS infection, but not prevent colonization of the organism. Our findings may contribute to the development of novel vaccine agents against MS infection.

17.
Viruses ; 14(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366541

RESUMO

Swine influenza virus (SIV) circulates worldwide, posing substantial economic loss and disease burden to humans and animals. Vaccination remains the most effective way to prevent SIV infection and transmission. In this study, we evaluated the protective efficacy of a recombinant, baculovirus-insect cell system-expressed bivalent nanoparticle SIV vaccine in mice challenged with drifted swine influenza H1N1 and H3N2 viruses. After a prime-boost immunization, the bivalent nanoparticle vaccine (BNV) induced high levels of hemagglutination inhibition (HAI) antibodies, virus-neutralization (VN) antibodies, and antigen-specific IgG antibodies in mice, as well as more efficient cytokine levels. The MF59 and CPG1 adjuvant could significantly promote both humoral and cellular immunity of BNV. The MF59 adjuvant showed a balanced Th1/Th2 immune response, and the CPG1 adjuvant tended to show a Th1-favored response. The BALB/c challenge test showed that BNV could significantly reduce lung viral loads and feces viral shedding, and showed fewer lung pathological lesions than those in PBS and inactivated vaccine groups. These results suggest that this novel bivalent nanoparticle swine influenza vaccine can be used as an efficacious vaccine candidate to induce robust immunity and provide broad protection against drifted subtypes in mice. Immune efficacy in pigs needs to be further evaluated.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Nanopartículas , Infecções por Orthomyxoviridae , Doenças dos Suínos , Humanos , Suínos , Camundongos , Animais , Vírus da Influenza A Subtipo H3N2 , Vacinas Combinadas , Anticorpos Antivirais , Adjuvantes Imunológicos
18.
Biomedicines ; 10(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359244

RESUMO

We studied the phenotypes in an oligodendrocyte genesis site at the acute stage of spinal cord injury, when we observed regenerated ascending neurites. Pan-oligodendrocyte marker OLIG2+ cells were more in fibroblast growth factor (FGF)-1-treated rats (F group) than in non-treated (T group) in this site, while the number of NG2+OX42- oligodendrocyte progenitor cell (OPC), CNPase+ OPC, Nkx2.2+ OPC, and APC+ remyelinating oligodendrocytes was less in the F group. Paradoxically, when we label the rats with pulsed bromodeoxyuridine (BrdU), we found that the mitotic NKX2.2+ OPC cells are more in the F group than in the T group. We tested the embryonic spinal cord mixed culture. FGF treatment resulted in more NG2(+) CNPase (+) than non-FGF-1-treated culture, while the more mature NG2(-) CNPase(+) cell numbers were reduced. When we block the FGF receptor in the injured rat model, the NG2+OX42- cell numbers were increased to be comparable to non-FGF-1 rats, while this failed to bring back the APC+ mature oligodendrocyte cell numbers. As migration of OPC toward injury is a major factor that was absent from the cell culture, we tested 8 mm away from the injury center, and found there were more NG2+ cells with FGF-1 treatment. We proposed that it was possibly a combination of migration and proliferation that resulted in a reduction in the NG2+ OPC population at the oligodendrocyte genesis site when FGF-1 was added to the spinal cord injury in vivo.

19.
Vet Res ; 53(1): 89, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307867

RESUMO

Peste des petits ruminants (PPR) is an acute and highly contagious disease and has long been a significant threat to small ruminant productivity worldwide. However, the molecular mechanism underlying host-PPRV interactions remains unclear and the long noncoding RNAs (lncRNAs) regulation of PPR virus (PPRV) infection has rarely been reported so far. Here, we first demonstrated that PPRV infection can induce an obvious innate immune response in caprine endometrial epithelial cells (EECs) at 48 h post-infection (hpi) with an MOI of 3. Subsequently, we determined that PPRV infection is associated with 191 significantly differentially expressed (SDE) lncRNAs, namely, 137 upregulated and 54 downregulated lncRNAs, in caprine EECs compared with mock control cells at 48 hpi by using deep sequencing technology. Importantly, bioinformatics preliminarily analyses revealed that these DE lncRNAs were closely related to the immune response. Furthermore, we identified a system of lncRNAs related to the immune response and focused on the role of lncRNA 10636385 (IRF1-AS) in regulating the innate immune response. Interestingly, we found that IRF1-AS was a potent positive regulator of IFN-ß and ISG production, which can significantly inhibit PPRV replication in host cells. In addition, our data revealed that IRF1-AS was positively correlated with its potential target gene, IRF1, which enhanced the activation of IRF3 and the expression of ISGs and interacted with IRF3. This study suggests that IRF1-AS could be a new host factor target for developing antiviral therapies against PPRV infection.


Assuntos
Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , RNA Longo não Codificante , Animais , Peste dos Pequenos Ruminantes/genética , RNA Longo não Codificante/genética , Cabras/genética , Vírus da Peste dos Pequenos Ruminantes/fisiologia , Interferon beta
20.
Comput Struct Biotechnol J ; 20: 4910-4920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147678

RESUMO

Cis-regulatory elements of promoters are essential for gene regulation by transcription factors (TFs). However, the regulatory roles of nonpromoter regions, TFs, and epigenetic marks remain poorly understood in plants. In this study, we characterized the cis-regulatory regions of 53 TFs and 19 histone marks in 328 chromatin immunoprecipitation (ChIP-seq) datasets from Arabidopsis. The genome-wide maps indicated that both promoters and regions around the transcription termination sites of protein-coding genes recruit the most TFs. The maps also revealed a diverse of histone combinations. The analysis suggested that exons play critical roles in the regulation of non-coding genes. Additionally, comparative analysis between heat-stress-responsive and nonresponsive genes indicated that the genes with distinct functions also exhibited substantial differences in cis-regulatory regions, histone regulation, and topologically associating domain (TAD) boundary organization. By integrating multiple high-throughput sequencing datasets, this study generated regulatory models for protein-coding genes, non-coding genes, and TAD boundaries to explain the complexity of transcriptional regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA